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EXECUTIVE SUMMARY 

The Regional Transportation Management Center (RTMC) at the Minnesota Department of 

Transportation (MnDOT) manages the Twin Cites’ (St. Paul and Minneapolis) freeway network and 

aggregates traffic data from a large number of vehicle detectors (about 7,830 detectors in 2019 and 

growing every year). Two types of vehicle detectors are mainly deployed, inductive loop detectors and 

microwave radar detectors. RTMC saves detector data consisting of volume, occupancy, and speed 

(when available) at a data rate of every 30 seconds from all detectors. MnDOT offices, such as Traffic 

Forecasting and Analysis (TFA), use this data for Federal Highway Administration (FHWA) reporting, 

traffic forecasting, and multiple planning applications.  

One of the MnDOT TFA office’s challenges in using RTMC detector data has been unavailability of quality 

information. Knowing which detectors have been producing high-quality data is critical for TFA, since 

choosing a set of good detectors leads to better or higher-quality design outcomes. For example, a 

continuous count (CC) station requires a set of detectors that provide good-quality data throughout the 

entire year, from which parameters like seasonal adjustment factors are more accurately computed. 

Consequently, quality control of traffic data has been an important issue to TFA. FHWA has also 

emphasized the same issue for many years, evidenced by TMG-2016 Section 2.6, which specifically 

states, “The TMG recommends that each agency improve the quality of reported traffic data by 

establishing quality assurance processes for traffic data collection and processing.”[1] This project was 

created to develop a tool for TFA analysts to quickly explore RTMC detector data and identify bad or 

good detectors for a given period.  

This project was started by reviewing an extensive list of literatures available on traffic detector 

diagnostic algorithms and erroneous data detection techniques, and then 13 diagnostic parameters 

were adopted. These parameters, which are named detector-health parameters, form the basis for 

quality control in this project, and they are all derived from raw 30-second detector volume and 

occupancy data. The parameters are computed every day for each detector and then stored in a 

relational database. The same parameters for each day are also fed into a classifier that outputs a 

health-level of the detector for the day. To simplify quality representation, four health levels were 

defined, which are: healthy, tolerable, impaired, and nonfunctional. Detectors in the healthy class were 

recommended for vehicle counting programs while the detectors in the tolerable class were 

recommended only if no healthy class detectors were available for the same location. The detectors in 

impaired or nonfunctional classes were not recommended for counting applications and considered 

targets for maintenance operations. 

The final detector-health system was implemented as a client-server system, in which a single server 

supplies data to many remote clients through the Internet. The server contains a relational database, 

and a software tool called “detHealth_Daily.exe” that computes and loads detector-health parameters 

to the detector-health database. This software tool connects to a data server called IRIS (Intelligent 

Roadway Information System) managed by RTMC, obtains raw volume and occupancy data for each 

detector, and then computes all detector-health parameters. For the relational database engine, a free 

version of MySQL is used. Currently, only one client program called “detHealth_App” is available, which 



 

is installed on the user’s personal computer. This application software provides detector-health 

classification in a pie chart per day, retrieval of health parameters, parameter visualization, station AADT 

computation, etc.  

This report includes few data analysis examples that were part of testing and development of the 

detector-health system (summarized in Chapter 4). Histograms of all detector-health parameters on 

interstate highway I-694 were computed, plotted, and analyzed to understand the frequency of 

occurrence. In histograms, most parameters exhibited an exponential distribution with a heavy 

concentration in the first few bins, which suggests that a majority of detectors were healthy for most of 

the time.  

RTMC maintains an incident database that stores reported incidents on the Twin Cities’ freeway 

network. Part of this data, which was provided to the research team, was a collection of incident data 

from the I-694 and I-94 interstate highway systems for the period, from January 1, 2015, to December 

31, 2016. In this data, RTMC classified incidents into four categories, which were stall, roadwork, hazard, 

and crash. Each incident was recorded as a single database record and its location was specified using 

latitude and longitude but without detector IDs. Since incidents were not directly tied to detector IDs, 

the research team had to study all potential detectors near the incident location and then figure out 

how each incident affected the corresponding detector data. It was found that roadwork and hazard 

incidents increased consecutive zero-volume counts, but crash and stall incidents did not noticeably 

affect zero-volume counts or daily traffic volumes.         

TESLA is a legacy RTMC maintenance logging system that recorded loop maintenance work orders. 

RTMC transitioned to a new maintenance logging system called TAMS in the fall of 2016 but provided 

the research team with the old TESLA data for 2015 and 2016 for study. As the basic methodology of 

investigating this data in relation to detector-health parameters, all stations on I-694 and I-94 were 

investigated. For all detectors in every station, whether they have had a record or records in the TESLA 

log from January 2015 to December 2016 was checked. If a maintenance record was found, then all 

detector-health parameters for that station were investigated. The research team found that detector 

repairs resulted in a sequence of event patterns. More specifically, all detectors in the station of repair 

event typically stopped producing data for few days before the repair, followed by a large number of 

negative volume counts for a few days, and then a normal pattern of traffic data was returned.  

In conclusion, this project was born out of the need for quality information on the detector-volume data 

provided by RTMC. Since RTMC does not provide quality information on its traffic data, the research 

team had to create a wide range of detector-health parameters to use as a quality measure. A database 

of these health parameters provided a new tool for exploring quality information of detectors.  During 

the project period, TFA reported that this new tool was used on several occasions and was effective in 

exploring reported problems of some continuous or short-duration count stations, as well as for a 

specific detector.    
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CHAPTER 1:  INTRODUCTION 

1.1 BACKGROUND  

Modern transportation systems rely heavily on many traffic sensors and the data they generate. Traffic 

management centers (TMCs) in major cities across the U.S. are one example; they typically manage tens 

of thousands of traffic detectors installed on their city’s freeways. The data produced from such a large 

system are often referred to as ITS (Intelligent Transportation Systems) generated data, because they 

are part of a large-scaled, sophisticated ITS network deployed throughout major cities. State 

transportation departments in planning and traffic forecasting offices use this available data for 

transportation monitoring, forecasting, planning, and reporting applications [1].     

ITS-generated traffic data are generally sampled at a higher time resolution than that of traditional 

traffic counting devices (such as pneumatic tube counters or piezo-sensor stations) because they are 

mainly used for real-time traffic and incident managements. Data are typically recorded every 15 to 30 

seconds. Due to a huge number of detectors deployed in TMC-managed freeway networks, it is often 

hard to maintain all of them to work in their full capacity, and thus some bad detectors are likely to be 

present in the system. The causes could be hardware malfunctions, road constructions, communication 

failures, power-supply problems, calibration errors, etc. Since a TMC’s mission is mainly in real-time 

traffic management, once the real-time data has been used for applications such as ramp metering or 

incident managements, the quality of past data is of less concern and their operations simply move on 

to the next phase. However, if the same data are used for transportation planning applications, accuracy 

of past traffic data, especially volume, becomes extremely important, because it can affect the 

outcomes of analyses, projections, or designs. Although a huge amount of traffic data is available from 

TMCs, information on which portion of the data is good or bad is rarely available. Therefore, there is a 

need to measure, label, and assure the quality of data before they are used in transportation 

applications.  

In Minnesota, the Regional Transportation Management Center (RTMC) within the Minnesota 

Department of Transportation (MnDOT) manages freeway traffic and incidents in the Twin Cites (St. Paul 

and Minneapolis) and aggregates data from about 7,830 detectors (in 2019 and this number grows 

every year) installed on the cities’ freeway network. Two types of detectors have mainly been deployed, 

which are loop detectors and microwave radar detectors. RTMC daily saves the detector data consisting 

of volume, occupancy, and/or speed if it is available, at a data rate of every 30 seconds from all 

detectors. Within MnDOT, offices involving transportation planning and forecast, such as Traffic 

Forecasting and Analysis (TFA), use this data to produce short-duration and continuous count data for 

various Twin Cities’ freeway locations. However, one of the major issues to TFA has been how to know 

(or discover) a set of good detectors without availability of data quality information. This project was 

created to improve quality of volume data by utilizing some form of detector quality parameters 

computed from 30-second volume and occupancy data available from RTMC. A strategy developed in 

this project was to create a database for detector-health parameters for each detector per day.   
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It should be mentioned that the effort of establishing a quality-control process at MnDOT TFA goes in 

parallel with the FHWA’s efforts in introducing quality control into traffic data collection and processing. 

TMG-2016 (Section 2.6) states, “The TMG recommends that each agency improve the quality of 

reported traffic data by establishing quality-assurance processes for traffic data collection and 

processing.” [2]  

1.2 LITERATURE REVIEW 

A large volume of research work has been done in the area of understanding faults in loop detectors and 

detecting consequential errors from the data. This section reviews literatures available on traffic 

detector diagnostic algorithms and erroneous data-detection techniques. Major sources used for this 

literature review were from the Transportation Research Record on-line database and Google scholar 

searches. 

Although numerous vehicle detection technologies, which include magnetic sensors, magnetometers, 

inductive loop detectors, video image processors, microwave radars, ultrasonic, acoustic, passive 

infrared sensors, etc., have been developed and commercially available for many years, inductive loop 

detectors have been by far the most widely used vehicle sensing technology in modern traffic control 

systems (Traffic Detector Handbook [2]). Similarly, traffic detectors in the Twin Cities’ freeway network 

managed by MnDOT RTMC also consist predominantly of inductive loop detectors. Therefore, this 

literature review focuses on loop detector diagnostics, but many of the same techniques could be used 

in other types of sensors.  

In general, loop detector diagnostic approaches are classified into two levels: microscopic and 

macroscopic, initially coined by Jacobson et al. [3]. Microscopic-level diagnostic tests concern individual 

vehicle actuation signals or diagnostic indicators output by detector electronics in the field cabinet. 

Macroscopic-level diagnostic tests, on the other hand, refer to quality-control algorithms executed at 

TMCs after the data have been aggregated from field sensors.  

A comprehensive treatment in microscopic-level information on inductive loop detectors can be found 

from the Traffic Detector Handbook [2]. It includes detailed descriptions of the underlying physics of 

inductance changes by a vehicle passage, proper installations of loop wires and lead-in cables, electronic 

units (detector board), acceptance tests, maintenance, and standards. This reference mainly provides 

information on basic failure tests at a control cabinet where individual loop detectors are connected. 

The tests include open/grounded-loop tests, presence/pulse mode tests, crosstalk detection tests, and 

sensitivity setup checks. An example of this type of basic loop signal test can be found from the methods 

developed in California, which established loop-detector installation acceptance criterion and 

maintenance techniques, as early as in mid-1970s [4].   

A large volume of work on microscopic-level loop diagnostics has been developed at the Berkeley 

Highway Laboratory (BHL) that uses vehicle actuation signals (event data) in the detector card [5]. Loops 

operate in presence mode for freeway operation applications. That is, they turn on and stay on as long 

as a vehicle is present on the loop detection zone. This actuation signal, consisting of on-times and off-

times, is sampled at 60 Hz through a controller such as model 170. What is distinctive at BHL was that 
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the on-time/off-time event data were transferred to the central sever located in their TMC and the 

event data was then used for developing loop-detector diagnostic algorithms [5]. The main advantage of 

tapping into this on-time/off-time vehicle actuation signal is fidelity available for individual vehicle 

measurements. For example, Chen and May [6] examined individual vehicle on-time of single loops 

against the statistical vehicle on-time data and determined validity of the detector operations. Their 

approach was sensitive to additional errors such as pulse breakups, where a single vehicle registers 

multiple actuations. Loop diagnostics utilizing on-time of dual loops was devised by Coifman [7]. The 

assumption he used was that at free-flow traffic, the on-times from the two loops should be virtually 

identical regardless of vehicle length. Loop errors were reported when two on-times differed over a 

preset threshold level. Coifman and Dhoorjaty [8] extended this result to include several more detector-

validation tests such as a headway versus on-time ratio test, feasible range of vehicle lengths test, 

cumulative distribution of vehicle lengths, etc. Another interesting work was done by Lee and Coifman 

[9], in which they devised an algorithm that could detect pulse breakup errors. Diagnosis of pulse 

breakup was possible by examining short off-times and then differentiating between pulse breakups and 

tailgating. Following BHL studies, a similar detector-event data-collection system was implemented by 

the TransNow research team at the University of Washington (UW) [10]. 

In loop detectors, crosstalk is typically caused by inductive or capacitive coupling between closely placed 

loops or closely spaced lead-in wires operating at similar frequencies and leads to false detection and 

counting [2]. The Traffic Detector Handbook [2] suggests detailed instructions on how to avoid crosstalk 

errors by selecting different frequencies and carefully wiring the lead wires, but it does not provide 

information on how to detect them. A systematic approach in detecting crosstalk from loops proposed 

by Ernst et al. [11] developed a crosstalk detection algorithm based on a spectral analysis of vehicle 

inductance signatures in the frequency domain computed by Fast Fourier Transform (FFT).  

Another type of detector error not discussed frequently but important is the segmentation error. 

Because loop detector event (actuation) data requires extra storage and bandwidth, controllers in a 

cabinet typically aggregate data in a preset interval, such as 30 seconds, into two values, volume and 

lane occupancy, which are then sent to TMC. A segmentation error may occur when a vehicle is present 

on the loop when the current interval terminates. In this case, the vehicle is counted toward the 

following interval, but part of its scan counts for occupancy are mistakenly assigned to the current 

interval. This incorrect count of scan in computing occupancy is referred to as a segmentation error. Yu 

et al. [12] developed a segmentation error detection algorithm based on loop-detector event data and 

was able to use that information to improve speed estimation from single loop detectors. They found 

that more than 15% of intervals are, in general, contaminated by segmentation errors [12].   

Until now, microscopic-level or control-cabinet level loop-diagnostic techniques have been reviewed. 

Next macroscopic-level diagnostics techniques are considered, in which detectors are diagnosed using a 

large amount of volume and occupancy data collected at a TMC. Macroscopic algorithms may be further 

divided into algorithms based on a single location analysis and a system-level analysis of multiple 

locations. As an example of single location analysis, Jacobson et al. [3] devised a diagnostic algorithm 

based on an “acceptable region” in the k-q plane, declaring the data good if they fall inside the 

acceptable region. The boundaries of the acceptable region are defined by a set of parameters, which 
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are calibrated from historical data. Cleghorn et al. [14] extended the work of Jacobson et al. by 

tightening the upper bound for the k-q ratio through the application of traffic-flow theory. Chen et al. 

[14] devised an algorithm based on daily statistics of detector error conditions, which is basically 

another way of testing acceptable regions of the k-q plane. More specifically, they tested daily statistics 

of four conditions: (1) occupancy and flow are mostly zero, (2) non-zero occupancy and zero flow, (3) 

very high occupancy, and (4) constant occupancy and flow. In addition, they devised an imputation 

algorithm for missing data points. Another algorithm for testing a single location was developed by 

Kwon and his students, which tested 10 parameters through a large decision tree [15].     

The second type of macroscopic-level diagnostic is based on spatial relations of traffic flow at the system 

level, involving multiple detector stations. A detector station here refers to a control cabinet that 

aggregates and processes loop signals from all lanes at that location and transfers the aggregated data 

(volume and occupancy) to TMC. The most frequently applied principle for system-level analysis is called 

the conservation-of-vehicles (COV) principle [16]. It states that, if the total number of vehicles counted 

by two consecutive detector stations is observed over a period, the difference in the cumulative counts 

at any time should not exceed the number of vehicles that can be accommodated in that length of the 

road under the jam density [17]. When the traffic volumes of two consecutive stations violate this 

principle, the cause is under or over counts of vehicles in the stations involved. Vanajakshi and Rilett 

successfully applied this principle in freeway traffic to diagnose bad loop-detector data [17]. Wall and 

Daily [20] used the same principle to adjust highway traffic volumes. Weijermars and Van Berkum [18] 

further extended and applied the COV principle in detecting invalid traffic data produced by single loop 

detectors at signalized intersections. In Minnesota, Kwon and MnDOT applied the COV principle in 

determining equivalent detector sets referred to as primary, secondary, and tertiary detector sets for 

computing annual average daily traffic (AADT) of a location [19]. In this approach, when errors were 

detected from the primary detector set, AADT was computed using the secondary detector set; when 

errors were present in the secondary set as well, AADT was computed from the tertiary detector set. If 

all three sets failed, the current data for the corresponding station were thrown away. This approach 

was implemented and used by MnDOT.  

In California, macroscopic-level diagnostics were applied through a large data aggregation system called 

PeMS (Performance Measurement System) [21]. With so much detector data (over 25,000 loops) 

collected to one location, many loop detector locations were mislabeled as an error in lane direction. 

Kwon et al. [22] developed an approach that can detect incorrect configuration information about the 

loop locations. Their method relies on the fact that flow, occupancy, or speed measurements between a 

pair of loops that are spatially close must show higher correlations than when they are farther apart. 

They found that 15.6% of loops had incorrectly assigned labels on the stretch of road they studied. 

Another interesting effort was introduction of a dashboard concept into TMC operations. Hranac and 

Petty [23] proposed digital dashboards representing detector health within the framework of PeMS. A 

dashboard is a collection of graphical visualizations of key metrics for decision makers. For example, it 

could display the percentage of bad detectors in a district, such as 65% of detectors are good and 34% of 

detectors are bad. The user can then drill down into the data to discover more details and validate the 

data interpretation.             
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Many loop-data screening tests at a macroscopic level are available as summarized above [17-23]. Most 

of them focus less on identification of the maintenance-required detectors and more on imputing or 

correcting the bad data. One of the interesting approaches might be integrating many of the studies and 

practices available into a single integrated solution. This research attempts to identify and integrate 

many of the past diagnostic tools into one integrated system to develop a quality-control software tool.   
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CHAPTER 2:  DETECTOR-HEALTH PARAMETERS 

This chapter describes detector-health parameters and health-level classification developed as a 

representation of quality in this project. All diagnostic parameters are integrated into a single database, 

and then a system level algorithm is explored using application of the Conservation-Of-Vehicles (COV) 

principle.   

2.1 DETECTOR-HEALTH PARAMETERS 

The raw data available from RTMC detectors are 30-second volume and occupancy data. Occupancy 

data are not available for all detectors but volume data are. Each parameter presented in this section 

may be classified into one of the four cases: (1) computed from volume data only, (2) computed from 

occupancy data only, (3) computed using the relationship between volume and occupancy, and (4) 

spatial relation of volume data. Most of the parameters described below are a collection of well-known 

detector diagnostic parameters in literatures surveyed in Section 1.2. Some parameters are unrelated to 

detector-health measure but included for future utility of the database. Each parameter is described 

with its definition and the actual short name used in the database. The short name was the database 

column name and is shown as italic letters inside the corresponding parenthesis.   

2.1.1 Consecutive zero volume (conZeroVol) 

This value is an integer and represents a total number of 30-second time slots comprising a collection of 

consecutive zero volumes for 10 or more minutes. More specifically, there are 2,880 30-second time 

slots in a day (24 hours), and conZeroVol is obtained by counting the number of time slots only if zero 

volumes consecutively occur and it lasts longer than 10 minutes (i.e., zero volumes are found from more 

than 20 consecutive 30 second time slots). If the duration of consecutive zero-volumes is less than 10 

minutes, it is ignored. A small conZeroVol value may not directly correlate to a faulty condition but when 

its value becomes very large, it indicates a potential problem in the sensor or system. For example, if a 

detector has consecutive zero volumes for more than 24 hours, it is highly likely that the detector is 

experiencing a faulty condition or a lane closure (construction or special event). This parameter has 

been used by MnDOT as a quality factor in the past, and it was particularly used as one the main 

measures to replace primary set volumes with secondary or tertiary equivalent volumes [19].     

2.1.2 Negative Volume Counts (negVolCnt) 

Total number of 30-second time slots with negative volumes. Volume values cannot be a negative 

number, but it is often used by the system to indicate an error condition. RTMC also places a negative 

volume number in 30-second time slots if an error condition was discovered in that slot.   
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2.1.3 Consecutive zero occupancy (conZeroOcc) 

Total number of 30-second time slots comprising a collection of continuous time spans with consecutive 

zero occupancies for 10 or more minutes. The same reasoning described in the consecutive zero 

volumes is applicable to consecutive zero occupancies.  

2.1.4 Negative Occupancy Counts (negOccCnt) 

Total number of 30-second time slots with negative occupancies. Occupancy values cannot be a 

negative number, but it is used by the system or detector to indicate an error condition.   

2.1.5 Occupancy lock-on sequence (occLockOn) 

Total number of 30-second time slots comprising a collection of time spans of consecutive occupancy 

lock-on conditions (i.e., 99<occupancy≤100) for 10 or more minutes. Occupancy values greater than 99 

percent are possible in real-world traffic under congestion, but lasting many long hours (such as 

consecutive 24 hours) imply an error condition.     

2.1.6 Zero-volume on non-zero occupancy (zvolOnOcc) 

Total number of 30-second time slots in which zero-volumes were detected on non-zero-occupancy. 

Ideally, zero volume should only exist under zero occupancy within each time slot. However, zero 

volume on non-zero occupancy may occur if a partial vehicle presence was captured at the end of the 

current time slot, and then the same vehicle is again captured and counted in the subsequent time slot. 

This problem is often referred to as a segmentation error [12]. If zero volumes persist on non-zero 

occupancies, a faulty condition in the detector may be the cause.  

2.1.7 Volume-over-count (overCnt) 

Total number of 30-second time slots in which volume is greater than 25 but less than 128 (25<vol<128). 

The theoretical limit of a single-lane volume for 30 seconds is around 25. If a 30-second volume exceeds 

this limit, it is likely caused by a fault such as mutual coupling in which vehicles in adjacent lanes are 

counted.   

2.1.8 Very-high-occupancy (highOcc)  

Total number of 30-second time slots with occupancy greater than 35%. This parameter correlates to 

detection of congestion, but it may provide additional information when it is used along with other 

parameters. If highOccs are present for a long period, it may be caused by a faulty condition in detector.   
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2.1.9 Constant volume (constVol) 

Total number of consecutive 30-second time slots in which volume values remain constant in the range 

(0<vol<128) for 10 or more minutes. In normal traffic conditions, volume counts at consecutive time 

slots rarely repeat, except for zeroes in low traffic hours. If a non-zero constant volume repeats for more 

than 10 minutes from a detector, it is likely caused by a faulty condition in the detector.   

2.1.10 Constant occupancy (constOcc)  

Total number of consecutive 30-second time slots in which occupancy values remain constant in the 

range (0.2<vol<100) for 10 or more minutes. The same reasoning described in the constant volume is 

applied to constOcc. 

2.1.11 Volume on low occupancy (volOnLowOcc)  

Total number of 30-second time slots in which volume is greater than one when occupancy is in the 

range occ≤0.2%. In a 30-second time slot, 0.2 percent occupancy can be measured on a 6x6 feet loop by 

a single vehicle passage of one feet in length with 80 mph speed. Therefore, an occupancy that is less 

than 0.2 percent is unrealistic, and it is only possible by a passage of a segment of a vehicle [12]. This 

condition occurs when vehicle on-time is present between two adjacent time slots. Such a low 

occupancy should not be counted as a complete vehicle since it is a fragment of a vehicle. Existence of 

multiple time slots with volumes greater than one when occ≤0.2% indicates a potential faulty condition 

in that detector.   

2.1.12 Correlation Coefficient (CorrCoef) 

The Correlation Coefficient (CorrCoef ) between volume and occupancy of a detector indicates a degree 

of linearity between them, and it is computed using the following formula. 

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓 =
∑ [(𝑉𝑜𝑙(𝑖)−𝑉𝑜𝑙𝑎𝑣𝑔)(𝑂𝑐𝑐(𝑖)−𝑂𝑐𝑐𝑎𝑣𝑔)]2879

𝑖=0

√∑ (𝑉𝑜𝑙(𝑖)−𝑉𝑜𝑙𝑎𝑣𝑔)22879
𝑖=0 √∑ (𝑂𝑐𝑐(𝑖)−𝑂𝑐𝑐𝑎𝑣𝑔)22879

𝑖=0

     (1) 

  

where i is an index of 30-second time slots, occ(i) is the occupancy at the ith time slot, vol(i) is the 

volume of the ith time slot, and subscription avg indicates an average. If CorrCoef is close to one, it 

means that the relation between volume and occupancy is almost perfectly linear, which is only possible 

by a “pulse mode” in a loop detector card. Pulse mode does not affect volume counts but affects speed 

estimates. Therefore, this parameter is included mainly for detection of pulse modes in loop cards.   
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2.1.13 Vol/occ ratio (volOccRatio) 

The volume and occupancy ratio (vol/occ) of a 30-second time slot on a healthy detector should stay 

inside the theoretical acceptable bounds. This theory was originally developed by Jacobson et. al [3] and 

adopted in this research as one of the detector-health parameters. The vol/occ ratio for a 30-second 

data follows the relation [3], 

 vol/occ = (u * g)/120        (2)  

where vol is the 30-second volume, and occ is the 30-second occupancy in percent, u is speed in mph, 

and g=K/(vehicle length + detector length) where K is a conversion factor. Simply speaking, g is a 

parameter that makes a speed estimation possible using only volume and occupancy, and thus it is a 

function of vehicle length. At RTMC, this value is called field length. Table 1 shows the acceptable ranges 

of vol/occ under four different ranges of occupancies. It was constructed by only modifying the speed 

limits (min and max speeds) of the original table derived by Jacobson et. al [3] to adapt to speed limits of 

the TC freeways but using the same g values. If a vol/occ ratio is outside this range, the data is 

considered erroneous. 

Table 1: Vol/Occ Ratio Thresholds for 30 Second Loop Data 

 Occupancy Ranges (%) 

0.2 – 7.99 8.0 – 25.99 26.0 – 35.99 36.0+ 

Min g 2.322 2.024 1.754 .980 

Max g 3.832 2.526 2.462 1.868 

Min speed (mph) 24.22 18.63 8.69 6.83 

Max speed (mph) 95 88 50 40 

Min Vol/Occ .469 .314 .129 .056 

Max Vol/Occ 3.033 1.852 1.026 .623 

 

2.1.14 Conservation-of-vehicles principle  

The conservation-of-vehicles (COV) principle is stated as: “the total number of vehicles counted by the 

upstream station should be counted by the downstream station at some future point in time if there are 

no exits and entrances between them.” [16] 

Consider a pair of upstream and downstream stations on the same road with all detectors in the same 

direction, and no exits or entrances exist between them. The configuration of this pair of stations must 

satisfy the conservation-of-vehicles principle since there are no entrances or exits between them. Let 

the cumulative difference of volumes at the k-th 30-second time slot between the pair be denoted D(k). 

Then the differences are:     

𝐷(𝑘) = 𝑇𝑢(𝑘) − 𝑇𝑑(𝑘 +  𝜏)                      𝑘 = 1 … 𝐾 − 𝜏   (3) 
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where Tu is the total volume at upstream, Td is the total volume at downstream, and τ is the time lag to 

catch the vehicles coming from upstream. If D(k) increases over time, it implies that some vehicles 

counted at upstream are not counted at downstream. If D(k) decreases over time, it implies that some 

vehicles not counted at upstream are counted at downstream. If D(k) is zero or near zero, it implies that 

vehicles are counted at the same time from both stations, which also indicates an error condition.   

A normalized difference ratio (diff_ratio) of volumes between a pair of stations is measured as: 

𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜(𝑣1, 𝑣2) = |𝑣1 − 𝑣2|/(
𝑣1+𝑣2

2
)     (4)    

where v1 and v2 are the cumulative station volumes for a single day ending at midnight.  

If this ratio is very small such as less than 0.01 when it is computed for the entire day (midnight-to-

midnight), it indicates that the station traffic volumes between the two stations obey the COV rule. This 

in turn suggests that all detectors in both stations are working correctly since it is extremely hard to 

satisfy COV if any of the detectors in the two consecutive stations are not properly functioning. 

Therefore, COV tests are preferably used to detect a set of healthy detectors. This project computes 

volumes at three consecutive, equivalent stations and then compares them using diff_ratio in Eq. (4) to 

determine a satisfactory condition of COV.   

2.2 DETECTOR-HEALTH-LEVEL CLASSIFICATION 

This project defines four levels of detector health: healthy, tolerable, impaired, and nonfunctional. A 

graphical representation may be expressed using a simple pie chart as shown in Figure 1. Such a chart 

could quickly show or summarize the health status of the whole detectors in a system, from which 

further information may be queried upon selecting one of the classes, similarly to the dashboard 

concept developed in [23].    
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Figure 2.1 A Pie-Chart Representation of Detector-Health Classification (This pie chart was not generated from 

real data, and it is only used for illustration) 

  

Healthy
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Tolerable
10%

Impaired
10%

Nonfunctional
20%

   

In this classification scheme, detectors in Healthy class are more desirable for vehicle counting 

programs, since the detectors in Healthy category provide the highest quality of counting data. 

Detectors in Tolerable should be used for counting only if the detectors in Healthy class are no longer 

available for the given location.  

The detectors in Impaired or Nonfunctional are targets for maintenance operations and not 

recommended for vehicle counting programs. Nonfunctional class is assigned to detectors that are 

completely broken and do not generate any useable data. These detectors should be considered as the 

highest priority targets for maintenance. Detectors in Impaired class generate data that may include a 

large portion of them missing or erroneous, and thus considered not accurate enough for use in vehicle 

counting programs.  

The health level of a detector is determined using a classifier algorithm that takes in N acceptance tests 

using the parameters described in Section 2.1. Figure 2 illustrates the concept of this classifier.  

Presently, 12 parameters are fed into the algorithm, and threshold levels set by user (user 

programmable) determines the classification.   
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Figure 2.2: Detector-health-level classifier 
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2.3 COV APPLICATION IN STATION VOLUME 

The COV principle described in Section 2.1.14 could be applied between two consecutive stations, even 

if entrances and/or exits between them may exist. Consider Figure 3 that has one entrance and one exit 

between each pair of two consecutive stations. The station in the middle is named Cur_Sta (current 

station), and its relations to upstream is called Up_Sta (upstream station) and downstream to Dn_Sta 

(downstream station). A simple COV rule is that entrances add while exits reduce the total volume at the 

downstream station. Suppose that we wish to estimate Cur_Sta volume in terms of the Up_Sta volume, 

and call this volume Equiv_Up_Sta_vol. Then, Equiv_Up_Sta_vol is computed by adding the Entrance_1 

volume and subtracting the Exit_1 volume from the Up_Sta volume, i.e., the Eq. (5) holds for cumulative 

volumes ending at midnight. 

Equiv_Up_Sta_vol = Up_Sta_vol + Entrance_1_vol – Exit_1_vol ≈ Cur_Sta_vol  (5) 

Similarly, the equivalent downstream volume (Equiv_Dn_Sta_vol ) can be calculated using current 

station volume as: 

Equiv_Dn_Sta_vol = Dn_Sta_vol - Entrance_2_vol + Exit_2_vol ≈ Cur_Sta_vol (6) 

 

 

 

Figure 2.3: Equivalent volume relations of a station with presence of entrance and exit nodes between upstream 

and downstream stations  

Entrance_1
Entrance_2

Exit_1
Exit_2

Cur_StaUp_Sta Dn_Sta

  

This leads to a condition for healthy station as: 

Cur_Sta_vol ≈ Equiv_Up_Sta_vol ≈  Equiv_Dn_Sta_vol    (7) 
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The basic reasoning for using Eq. 7 as the acceptance condition for a healthy station is that, if one or 

more malfunctioning detectors exist in any of the stations under test, it will affect the total volume of 

the station and is unlikely to hold COV relations on three equivalent stations. Reviews on actual RTMC 

traffic data showed that less than 1 percent of differences exist when all detectors involved are working 

correctly. When detector errors exist, the differences were typically higher than 5 percent.   

The COV principle may also be applied to detectors in an entrance ramp. Figure 4 illustrates multiple 

types of detectors installed in a typical entrance ramp on the Twin Cities’ freeway network. This 

particular example has a passage detector (labeled P), a bypass detector (labeled B), a merge detector 

(labeled M), and two queue detectors (labeled Q). Queue detectors are used to detect if the vehicles 

queued at an entrance ramp are stretched beyond the queue detectors or not. A bypass lane allows 

bypass of high-occupancy vehicles (HOVs) where a B detector is placed. Merge detectors count all 

vehicles entering the highway from the entrance node where the M detector was installed, resulting in 

equal to the sum of traffic volumes in passage and bypass lanes. Therefore, the equivalency relation for 

daily volumes of detectors in an entrance ramp is given by:   

      Vol(all Q) ≈ Vol(P + B) ≈ Vol(M)      (8) 

 

      

 

 

Figure 2.4: COV relations in an entrance ramp 
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Eq. (8) describes that volume sum of all Q detectors or M detector should be equal to the volume sum of 

P and B detectors. This relation was used to identify good detectors in entrance ramps in a similar 

manner as the COV rules applied on consecutive stations. 

It should be noted that exit ramps in the Twin Cities’ freeway network do not have redundant detectors 

installed, thus the COV principle cannot be applied in exit ramps. It is also important to note that the 

COV principle does not reveal information on which detector is bad or good, but it gives information on 

which station contains one or more bad detectors. Because of this limitation, it is only used for 

identifications of good stations.  

2.4 STATION VOLUME SELECTION RULES FOR COMPUTING AADT 

For each station, three equivalent station volumes are daily available for computing AADT [24] as 

illustrated Figures 3. Therefore, there must be a rule for choosing a station volume from the available 

three stations. This section describes the selection rules developed and implemented in this project.  

Let the daily station volume be denoted for i-th station on day k as Sta_vol(i, k). Define the equivalent 

upstream and downstream volumes as Sta_vol(i+1, k) and Sta_vol(i-1, k), respectively, i.e.,   

Sta_vol(i+1, k) = equivalent upstream station volume of station i on day k, 

Sta_vol(i, k) = current station volume of station i, on day k, 

Sta_vol(i-1, k) = equivalent downstream station volume of station i on day k, 

When station volumes are computed, a missing percent of the daily volume is also computed by dividing 

the total number of 30-second time slots with missing values. For example, if volume data in a day 

include 360 missing slots, the missing percent would be (360/2880)*100=12.5 percent since a single day 

has 2,880 30-second time slots. Let the missing percent of a station be denoted as: 

Miss_per(i+1,k) = missing percent of Sta_vol(i+1, k)  

Miss_per(i,k) = missing percent of Sta_vol(i, k)  

Miss_per(i-1,k) = missing percent of Sta_vol(i-1, k) 

This missing percent information is used to select a daily station volume out of three available values. 

Selection rules were established for the following four cases, which would cover all possible cases.  

Case 1: All three station volumes include missing values, i.e., (Miss_per(i,k)>0%), (Miss_per(i+1,k)>0%), 

and (Miss_per(i-1,k)>0%) 

 Select a station volume that has minimum missing percent. 

Case 2: All three stations are healthy and their daily volumes include zero missing values. 

           Use the average of the three station volumes as the station volume, i.e.,   
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[Sta_vol(i, k) + Sta_vol(i+1, k) + Sta_vol(i-1, k)]/3 

Case 3: Only one station volume has zero missing values and the other two have missing values 

 Use the station volume with zero missing values. 

Case 4: Two station volumes have no missing values.  

  Use the average of the two station volumes with zero missing values. 

In summary, the above rule selects a station volume with minimum missing percent if all stations have 

missing percent. If there exist more than one station volumes with zero missing values, average of them 

are used as the station volume.  

2.5 AADT COMPUTATION ALGORITHM 

The software implementation of AADT computation in this project follows the algorithm published by 

AASHTO in 1992 referred often to as “average of averages” [25] and described here for clarification.  

1. Compute day-of-week (DOW) ADT (average daily traffic) for each month, i.e., average 

volume of Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday of the 

month. This produces seven values for each month. Call these values ADT_DOW (i,j) where 

i=1,2,…,12 are months and j=1,2,…,7 are day-of-week. This produces 84 (12 x 7) values.  

2. Compute an average ADT for each day-of-week across 12 months, i.e., 

   Avg_ADT_DOW(j) = [∑ ADT_DOW (i, j)12
𝑖=1 ]/12 for j=1,2,…,7. 

3. AASHTO_AADT = [ ∑ Avg_ADT_DOW(j)7
𝑗=1 ]/7 

All AADT values implemented in the software were computed using the above algorithm. In the Stations 

tab of the software, the rule described in Section 2.4 was used. In the Detectors tab, a user provides a 

list of detector IDs, and the software computes combined AADT of all detectors listed, which is called a 

station. Daily station volumes were excluded from AADT computation if it meets any of the following 

conditions.  

 Station volume = 0. Zero station volumes can only occur if detectors were faulty or no vehicles 

passed through any of the detectors for the whole day. Since either case would introduce a 

strong bias to the average, it is excluded from computing the average.   

 Station volume = -1. Negative one indicates that all volume data are missing and thus no valid 

data is included in the data; it is excluded from the AADT computation.    

 Missing percent ≥ 20%. If a station volume was computed using more than 20 percent of missing 

data, it is excluded from the AADT computation because it could introduce a bias in the average. 

(Note: A missing-percent threshold, 20%, was used as the default value, and no effort was made 
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to verify this value due to limited time in this project. This limit was recommended by one of the 

MnDOT analysts.)  
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CHAPTER 3:  IMPLEMENTATION OF DETECTOR-HEALTH SYSTEM 
 

3.1 OVERALL SYSTEM 

 

The final detector-health system developed in this project was designed as a client-server model, in that 

a single server serves many remote clients through Internet. This relation is illustrated in Figure 5. The 

clients remotely query the detector-health database housed in the server through Internet and support 

data needs of the client application. One main advantage of separating between clients from a server is 

that both side software can independently evolve over time, as long as the table structure of the 

database remains compatible with the client-side applications.    

 

The server-side software comprises of a relational database, archived files of detector-health 

parameters, and a data maintenance program. For the relational database engine, a free version MySQL 

was used. This version still allows remote access of its databases through Internet. A software tool called 

“detHealth_daily.exe” was developed for the server-side software management. This program acquires 

raw detector data from the IRIS (Intelligent Roadway Information System) server managed by RTMC, 

computes all detector-health parameters, and then loads them to the MySQL database.  

 

Protection of server data is important and must be addressed as part of the overall system maintenance 

strategy. Presently, detector-health parameters are produced as CSV (Comma Separated Values) files, 

archived, and then loaded to the server database. The table column structures of the CSV files precisely 

match with the tables in the database, allowing simple uploading or downloading from one to the other. 

By this process, backup of the server database is automatically created and archived in the storage. If 

the CSV files were stored in a network attached storage (NAS) with a RAID (Redundant Array of 

Inexpensive Disks) configuration, the CSV files would be well protected and served as a backup. The 

tables of database can be directly restored using the CSV files stored in NAS. Another protection needed 

is robustness and high availability of the server itself. Presently, the server was installed on a regular 

personal computer (PC) and placed in an empty table in the office of MnDOT TFA (Traffic Data Forecast 

and Analysis). In order to prevent any accidental shut down or catastrophic failure of the server, MnDOT 

is considering an option to move the server to a virtual machine (VM). Keeping the server at a VM would 

provide a much higher reliability and availability.  

 

Presently, only one client software-package that installs “detHealth_app” has been developed and 

distributed to MnDOT in this project. The detHealth_app program can be installed on any user PCs 

inside the MnDOT firewall by just few mouse clicks and is available for download from a webpage 

provided by the PI of this project. All user interfaces of this software tool were designed using graphic 

user interface (GUI) to make it easy to use. This software provides detector-health classification, 

retrieval of detector-health parameters, historic parameter retrievals and visualization, station AADT 

computation, hourly and daily volumes, station search in a road map, r_node search and information 

retrieval, and mapping in a Google map. This software is further described in Section 3.5.  
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It should be noted that the MnDOT Internet firewall prevents any client trying to connect to the server 

from outside MnDOT network. However, clients running on any of the PCs inside the MnDOT firewall 

should be able to connect to the server even if the office is located outside Twin Cities.  

Figure 3.1: Client-server implementation of detector-health system 
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3.2 DATABASE IMPLEMENTATION AND TABLES 

 

The database engine, MySQL, adopted for this project was an open-source relational database 

management system (RDBMS), presently owned and distributed by the Oracle Corporation. Among the 

various versions available, the MySQL Community Edition was installed in this project, which is free 

under General Public Licensing (GPL). Proprietary licensing versions include Oracle MySQL Cloud Service, 

MySQL Enterprise Edition, and MySQL Cluster CGE, which are all very powerful and used by many large 

corporations but not free.    

 

MySQL allows creation of multiple databases, but only one database called “detectorhealth” was 

sufficient and created for this project. The main table of the database is the health_param table which 

consists of 25 columns defined in Table 2. In Table 2, each row corresponds to a column in the 

health_param database table. Each database record is equivalent to a single row in the equivalent CSV 

file and represents detector-health parameters of a single detector on a single day. The column indices 0 

through 8 in Table 2 are used for identification of the detector and date, i.e., they consist of date, route, 

dir, station ID, r_node name, lane number, detector category, and currently abandoned or not. 

Uniqueness of the row is identified through three primary keys, which are date, r_node, and detector ID. 

Column indices 9 through 21 store the detector-health parameters for that day. Column 22 stores the 

traffic volume of the day and used for volume retrievals and AADT computations. 

 

Column 24 stores healthLevel, which is a single character and initially determined by the user 

programmable threshold levels of health parameters. The entries of healthlevel are shown below; more 

details on the classification algorithm is described in subsection 3.3.3. 

 

 H=Healthy  

T=Tolerable  

I=Impaired  

N=Nonfunctional  

O=Offline (detectors currently offline) 

G=Green counter (detector record used for green light counting of ramp) 

 

Column 23, COV_ap, consists of two characters and keeps the status of how the COV principle 

application resulted in health level changes. The first character describes the result of health-level 

change by the first COV application, and the second character describes the result of second COV 

application using multiple r_nodes defined in COV_def. The first COV check is called r_node spatial-

relation check. This process occurs within a single r_node and performs similarity checks of daily 

volumes when an r_node contains redundant detectors. For some r_nodes with n_type=Station, a single 

lane may contain multiple detectors within a close proximity. Examples include dual detectors installed 

for a speed trap or redundant installation due to construction or future uses. If multiple detectors in the 

same lane within a single r_node produce similar volumes after counting a whole day, the detectors are 

likely working correctly and the health-level is upgraded. Another case occurs when an r_node is an 
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Entrance node (n_type=Entrance). As shown in Figure 4, a fully configured Entrance node includes 

passage detectors (P), HOV bypass detectors (B), merge detectors (M), and queue detectors (Q). If all 

detectors were working correctly, the volume of P and B detectors combined should be close to the 

volume of Q detectors combined or M detectors combined. The test results are stored in the database 

using the characters defined by: 

 

N = r_node spatial relation check or COV station test was not applicable.  

S = health-level stayed same after checking r_node spatial relation or COV test 

U =  health-level was upgraded after checking r_node spatial relation or COV test 

D =  health-level was downgraded after checking r_node spatial relation or COV test  

NN = Initialized default value.  

 

The second COV test is performed when an r_node is a Station and has redundant equivalent upstream 

and downstream stations. The algorithm of this test was described in Section 2.3, and the result of the 

health-level change is specified in the second character of the COV_ap field using one of the four 

characters described above.   

 

Table 2: Column Description of health_param Table 

Column 

Index 

Column 

Heading 

Data 

Type 

Null Notes 

0 det_date  date,  

primary key 

Not 

null 

Date of this detector-health parameter. Use 

format of “yyyy-MM-dd”. 

1 route varchar(20),  

primary key 

Not 

null 

route name, e.g., “I-94” 

2 dir varchar(10) null route direction, e.g., “EB” 

3 staID varchar(20) null If n_type is not “Station”, enter n_type, i.e., 

“Exit”, “Entrance”, “Intersection”, or “Access”, 

instead of station ID. If it is a Station but 

staID=“”, then fill in “Station” 

4 r_node varchar(20),  

primary key 

Not 

null 

r_node name, it is a string: ex, “rnd_87075” 

5 detID varchar(15),  

primary key 

Not 

null 

“name” attribute of detector in metro_config. 

T####=temporary detectors, R####=Rochester 

detectors, ####=TC normal detectors, where 

“####” denotes a numeric number 

6 lane varchar(1) null lane number, 1, 2, 3, ..., default=“0” 

7 det_cat varchar(3) null detector category: A, B, G, M, P, Q, V, X, D, R, 

HT, CD, H, O, or default= “” 

8 abandoned varchar(1) null ‘t’ or ‘f’ 
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9 conZeroVol int Not 

null 

Total number of 30sec time slots computed 

using consecutive zero-volumes extending 10 or 

more minutes. Assign -1 if vol file is missing. 

10 negVolCnt int Not 

null 

Total number of 30sec time slots with negative 

volumes. Special Case: -1= “missing vol file 

(offline)” 

11 conZeroOcc int Not 

null 

Total number of 30sec time slots computed 

using consecutive zero-occupancies extending 

10 or more minutes. Assign -1 if occ file is 

missing. 

12 negOccCnt int Not 

null 

Total number of 30sec time slots with negative 

occupancies. Special Case: -1= “missing occ file 

(offline)” 

13 occLockOn int Not 

null 

Total number of consecutive 30sec time slots of 

10 or more minutes in which occ is in the range 

of 99<occ≤100 percent. Special case: -

1=“missing occ file (offline)” 

14 zvolOnOcc int Not 

null 

Total number of 30sec time slots in which the 

slots have zero-volume on a non-zero 

occupancy.  

 -1= “missing vol or occ file (offline)” 

15 overCnt int Not 

null 

Total number of 30sec time slots with 

25<vol<128.  

-1= “missing vol file (offline)” 

16 highOcc int Not 

null 

Total number of 30sec time slots with occ>35%.  

-1= “missing occ file (offline)” 

17 constVol int Not 

null 

Total number of consecutive 30sec time slots 

with (vol=Constant) where vol is in a valid range 

of 0<vol≤127. Consecutive time is defined as 10 

or more minutes of continuous time for this 

parameter.  

-1= “missing vol file (offline)” 

18 constOcc int Not 

null 

Total number of consecutive 30sec time slots 

with (occ=Constant) where 0.2<occ<100. 

Consecutive time is defined as 10 or more 

minutes of continuous time (20 30sec slots). -

1=”missing occ file (offline)” 

19 volOnLowOcc int Not 

null 

Total number of 30sec time slots with (vol>1 

when 0≤occ≤0.2%). 

 -1= “vol/occ file pair not available” 
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20 corrCoef float4 Not 

null 

Correlation Coefficient computed using 30sec 

vol and occ pairs. Assign corrCoef=0, if the 

denominator of the formula becomes zero. 

Assign corrCoef= -10 if vol/occ file pair not 

available. 

21 volOccRatio int Not 

null 

Total number of 30sec time slots violating the 

acceptable range of vol/occ ratio.  

-1= “vol/occ file pair not available” 

22 detVol int Not 

null 

Total detector-volume of the day. Exclude 

negative 30sec volumes (i.e., vol>127) in the 

total.  

-1= “missing vol file (offline)” 

23 COV_ap varchar(2) null COV application status. N= not applied or 

applicable, S=health level stayed same, U= 

health-level upgrade, D=health-level 

downgrade.  

24 healthLevel varchar(1) null H=Healthy, T=Tolerable, I=Impaired, 

N=Nonfunctional, O=Offline, G=Green counter 

 

The second table the detectorhealth database is the COV_data table. This table stores the 

computational results of COV applied to r_nodes.  
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Table 3: Column description of “cov_data” Table in detectorhealth Database 

 

Column 

Index 

Column Heading Data 

Type 

Null Notes 

0 cov_date  date, primary key Not null format “yyyy-MM-dd” 

1 r_node varchar(20), 

primary key 

Not null r_node name 

2 staID varchar(15) null Station name 

3 route varchar(20) null route name, ex: “I-694” 

4 dir varchar(10) null route direction, ex: “WB” 

5 cur_sta_vol int null current station volume from 

selected detectors 

6 cur_sta_conzero int null conZeroVol added from the main 

station detectors  

7 cur_sta_negcnt int null negVolCnt added from the main 

station detectors 

8 cur_offline int null number of off-line detectors at 

the current station 

9 cur_dets_selected varchar(80) null list of detectors selected for 

curr_sta 

10 up_sta_vol int null upstream station volume 

11 up_sta_conzero int null conZeroVol added from the 

upstream detectors 

12 up_sta_negcnt int null negVolCnt added from the 

upstream station detectors 

13 up_offline int null number of off-line detectors at 

the upstream station 

14 up_dets_selected varchar(80) null list of detectors selected for 

up_sta 

15 dn_sta_vol int null downstream station volume 

16 dn_sta_conzero int null conZeroVol added from the 

downstream detectors 

17 dn_sta_negcnt int null negVolCnt added from the 

downstream station detectors 

18 dn_offline int null number of off-line detectors at 

the downstream station 

19 dn_dets_selected varchar(80) null list of detectors selected for 

dn_sta 
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20 lat float8 (string) null current r_node latitude 

21 lon float8 (string) null current r_node longitude 

 

Note: 

9. The cur_dets_selected field follows the format of detector names separated by “/”.  

14. 19.  The up_dets_selected and dn_dets_selected fields follow the detector list format used in the Table-4, 

COV_def table, columns 7 and 9.  

 

3.3 DATA PROCESSING STEPS OF THE SERVER MANAGEMENT SOFTWARE 

(DETHEALTH_DAILY)  

 

The server includes a MySQL database engine and a sever management program called detHealth_daily. 

This program is responsible for computing all detector-health parameters and then loading them to the 

detectorhealth database. This section describes how the raw detector data are internally processed by 

the server software, and then how the produced data are stored into the database. The details on user 

level description of this software are available from the user manual, “detHealth_daily: User Manual,” 

which is available from the software download web page.  

 

The detHealth_daily program is designed to run daily by a Windows scheduler. The server software is 

complex, and this section will attempt to describe the whole process by breaking them down to each 

process in subsections.   

3.3.1 Step1: Download metro_config.xml  

The first process of detHealth_daily is to download information related to all currently- available traffic 

detectors managed by RTMC. RTMC publishes most recent traffic detector information in their web site 

in a form of compressed file with filename, metro_config.xml.gz. This file is a well-structured xml file 

compressed using a gzip utility, which is a utility commonly available in UNIX or Linux operating systems 

(OS’s). The record on when the content of this file changed is not available, and thus the history of new 

detector allocations or removal can only be kept track of by downloading and archiving the gzip file 

daily. Therefore, the first few steps are: download a metro_config.xml.gz file from the RTMC IRIS server, 

uncompress it, add a timestamp in the file, and save to a storage. The filename is given a format of 

 

     metro_config.yyyymmdd.xml 

 

where yyyy is a four-digit year, mm is a two-digit month, and dd is a two digit day. The folder for storing 

this file can be set by user using the “Settings/Parameters” menu, but it is typically saved in the folder 

with name “~/traffic/defines/metro_config/” in a file system. If a NAS is available, it should be stored in 

a NAS since it is a critical file.  
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Each metro_config.xml file contains an xml data tree with hierarchically structured. At the top, the 

whole roadway network is defined by a set of corridors, and then each corridor is defined by a road 

name such as ‘I-35E’ and a direction attribute such as ‘SB’. Consequently, each corridor represents only 

one direction of the road. The basic structure is described using an example, I-35E. The highway, I-35E, 

consists of two corridors, ‘I-35E SB’ and ‘I-35E NB’. Each corridor is then defined using a set of r_nodes 

that represent the following types at a location on the corridor.  

 

 “Station” (default and means Main),  

 “Exit” 

 “Entrance” 

 “Intersection” 

 “Access”  

 “Interchange”   

     

One of the useful attributes of r_node in developing application is the GPS location information, 

expressed in longitude and latitude. It can be used to pinpoint in a map where the r_node is and the 

detectors belong to that location. Each r_node is next defined through nested elements. The following 

xml shows an r_node defined for an entrance ramp in I-35E SB.       

    

<r_node name='rnd_94495' n_type='Entrance' pickable='t' transition='Leg' label='Co Rd 14' lon='-

93.03155' lat='45.16164' lanes='1' shift='6' s_limit='70'> 

    <detector name='4973' label='35E/CR14SG' category='G'/> 

    <detector name='6412' label='35E/CR14SM' category='M' controller='ctl_95515'/> 

    <detector name='6445' label='35E/CR14SB' category='B' controller='ctl_95515'/> 

    <detector name='6446' label='35E/CR14SQ1' category='Q' lane='1' controller='ctl_95515'/> 

    <detector name='6447' label='35E/CR14SQ2' category='Q' lane='2' controller='ctl_95515'/> 

    <meter name='M35ES26' lon='-93.03196' lat='45.16266' storage='445'/> 

  </r_node> 

 

Detector categories summarized in Table 4 can be seen here as a category attribute in the xml 

statement. Detector category information is critical for the data processing and will be used in future 

descriptions. Another important information used is the lane numbers, which was used in deriving 

relationships of lanes for applying the COV principle.  
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Table 4: Detector Category 

Category Description 

A Auxilliary detector 

B HOV bypass 

G Count frame meter (number of greens) 

M Merge detector of ramp 

P Passage detector 

Q Ramp queue meter 

V Speed trap  

X Exit Detector of ramp 

D Shoulder 

R Reversible 

HT HOT lane 

CD Collector/Distributor lanes (local-express 

lanes) 

H HOV lane 

O Bus only lane 

“” Blank, main lane default or not defined 

 

3.3.2 Step2: Derive three equivalent detector sets for each r_node  

 

After downloading a metro_config.xml file for the day, the program analyzes each corridor and r_nodes 

in the corridor to determine equivalent detector sets. For each r_node with n_type=Station, equivalent 

upstream and downstream station volume relations described in Section 2.3 and Figure 3 are derived 

from the metro_config.xml file of the day. This result is saved as a CSV file with a timestamped filename 

given by: 

   

 COV_def.yyyymmdd.csv 

 

This file is saved in the folder “~/traffic/defines/COV_def/” and the timestamp matches with the 

corresponding metro_config. yyyymmdd .xml file. The data processing is done by one corridor at a time, 

and the following rules are applied in deriving a COV_def file.  

 

 Create a list of r_nodes in the order defined in the metro_config.xml file for the given route and 

direction. Exclude r_nodes with active=’f’. Exclude all n_type=’Station’ with no detectors. 

Include all n_type=’Entrance’ and ‘Exit’ even if they have no detectors. Exclude all r_nodes with 

n_type = ‘Intersection’ or ‘Access’. 
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 Pick three consecutive Station nodes. Label them upstream, current and downstream stations 

following the lane traffic direction.  

 Derive r_node relations using Exit and Entrance nodes between consecutive Stations by 

following the COV principle described using Eq. (5) and (6) in Section 2.3. Create a list of the 

detectors corresponding to each r_node including signs determined by Eq. (5) and (6).  

 

Table 5 describes each column of a COV_def CSV file. This table is constructed based on r_nodes, and 

the columns 0 – 4 are used as the identity of the current r_node, which are def_date, r_node name, 

station ID (staID), route, and direction (dir). To define upstream and downstream equivalent stations, a 

list of r_nodes are provided using a separator “&” and “+” or “-“ sign, under the column headings of 

up_rnodes and dn_rnodes. For an r_node description, sign prefix is required even for “+”. The following 

shows an example. 

 

 +rnd_2345&-rnd_34449&+rnd_0899  

 

This string instructs that volumes of r_nodes, rnd_2345 and rnd_0899, must be added, while the volume 

of rnd_34449 must be subtracted to compute the total station volume. These r_node relations are 

translated into a list of detectors and then stored in column names: cur_det_list, up_det_list, and 

dn_det_list.  

 

The data type of cur_det_list column is a text string, and it consists of detector names of the current 

station separated by “/”. For example, if string of a current station was “2345/4567/2346”, the station 

has detectors with names, “2345”, “4567”, and “2346”. All of them are expressed without sign and takes 

positive sign by default, because the current node is always a station. If a lane has more than one 

detector, all detectors must be listed, but it does not have to follow the order of lane numbers. 

  

Detector lists stored in up_det_list, and dn_det_list columns use a more complex syntax.  Since station 

volumes are a function of r_nodes and its node types (n_type), it specifies n_type followed by a list of 

detectors of that r_node. The final n_type prefixes used are S= “Station”, E= “Entrance”, and X= “Exit” 

with all capital letters. Separator “&” divides r_nodes and “/” divides detectors. A plus sign (“+”) 

indicates addition while a negative sign (“–”) indicates subtraction in computing the r_node volumes 

from the total station volume, and the signs are only applied at the r_node level (i.e., not detector level). 

An example string of an equivalent station with two entrance nodes and one exit node is given by:   

 

+S2456/3457/3458/T5687&-E456/457/458/T5687&-E678/8974/345&+X2456/3457 

 

The volume of this station is computed by: 

Station_volume = vol(2456) + vol(3457) + vol (3458) + vol(T5687) - vol (456) - vol (457) – vol(458) – 

vol(T5687) – vol(678)-vol(8974) – vol(345) + vol(2456) + vol(3457) 

where vol(####) denotes a single day volume of detector name “####”. 
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Some Exit and Entrance nodes may not have any detectors, and thus a syntax with no detectors are 

allowed. For example, “+S2435/345&-E&+X” is acceptable and indicates that the Entrance and Exit 

r_nodes do not have any detectors. For this specification, all “G” detectors are excluded in the detector 

list, since G detectors are not traffic detectors but counters used for storing a number of green light 

counts occurred in a freeway Entrance ramp. 

 

Table 5: COV Defines Table 

Column 

Index 

Column 

Heading 

Data 

Type 

Null Notes 

0 def_date date, 

primary key 

Not null the date of metro_config file used to 

produce this file 

1 r_node varchar(20), 

primary key 

Not null r_node name, only n_type=Station 

2 staID varchar(10) null Station name. If staID=“”, leave it as 

blank 

3 route varchar(20), 

primary key 

not null route name, ex: I-694 

4 dir varchar(10), 

primary key 

not null direction of the route 

5 cur_det_list varchar(80) null list of all detector names defined in the 

current station 

6 up_rnodes varchar(80) null list of equivalent upstream r_nodes 

7 up_det_list varchar(120) null detector list of equivalent upstream 

station 

8 dn_rnodes varchar(80) null list of equivalent downstream r_nodes 

9 dn_det_list varchar(120) null detector list of equivalent downstream 

station 

10 lat float8 (string) null current r_node latitude 

11 lon float8 (string) null current r_node longitude 

 

3.3.3 Step 3: Compute all detector-health parameters  

 

The parameters specified in the columns 9 -24 in Table 2 are computed using the raw volume and 

occupancy data queried and received from the IRIS server. For this computation, threshold values of the 

health-level classifier described in Figure 2 are first read in from a file. This table is user programmable 

and saved in a CSV format given in Table 6. The file is stored in the 

“~/traffic/defines/health_thresholds/” folder and has a timestamp in the middle of the filename; the file 

name takes the following format:  
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thresholds.yyyymmdd.csv 

 

The same timestamp convention used in metro_config and COV_def files are applied here. The column 

headings of this table is specified in Table 6. Thresholds in columns 4-6 are illustrated in Figure 6.  Notice 

that health levels, -1, 4, and 5 are not determined through the thresholding process.     

 

Table 6: Column Headings of Health Parameter Thresholds 

Column 

Index 

Column 

Heading 

Data 

Type 

Null Description 

0 parameter varchar(20), primary 

key 

Not null Detector-health parameter 

1 ver_date datetime, primary key Not null date of table valued entered 

2 ver_num int, primary key Not null threshold table version number  

3 active varchar(1) Not null ‘t’ or ‘f’ for active or inactive for the 

classification algorithm 

4 th_3to2 int null level 3, if param>th_3to2, -1=“do 

not use” 

5 th_2to1 int null level 2, if param>th_2to1, -1= “do 

not use” 

6 th_1to0 int null level 0, if param < th_1to0, -1= “do 

not use” 

 

 

 

Figure 3.2: Numerical and a single-letter representation of Health levels and the three thresholds defined 

between four health levels 

Level 0: Healthy (H)

Level 3: Non-functional (N)

Level 2: Impaired (I)

Level 1: Tolerable (T)

Level 4: Off-line (O)

th_1to0

th_2to1

th_3to2

Level 5: Green Counter (G)

Level -1: Unknown (?)
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Figure 3.3: Settings window available in detHealth_daily for programming threshold levels 

 

Threshold levels are designed to be programmable by user using the settings window shown in Figure 7. 

It should be noted that entry “-1” means that the corresponding threshold is not used. Below describes 

the actual implementation of the thresholding processes in the health level (HL) classification applied in 

detHealth_daily.exe. A general rule is given first and then then details of each case is described. 

 

 Test is performed starting from HL=4 and then moved down to the next lower level. The cases 

survived the last test become HL=0 (healthy).  

 All if-conditions per given HL are in OR relationship, i.e., if any of the listed conditions is met, it 

selects the assigned HL.  
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HL =5 (G), if 

Detector category (det_cat) = G,  special case, not programmable 

else continue 

HL =4 (O), if 

negVolCnt=-1,  special case, not programmable 

else continue 

HL =3 (N), if 

1. zVolOnOcc=2880, special case, not programmable 

2. conZeroVol=2880 for five or more days (not implemented yet) 

else continue 

HL =3 (N), if 

1. negVolCnt > 2736 (95%),   negVolCnt.th_3to2=2736 

2. negOccCnt > 2736 (95%),   negOccCnt.th_3to2=2736 

3. occLockOn: not used,    occLockOn.th_3to2= -1 

4. zVolOnOcc: not used,    zVolOnOcc.th_3to2= -1 

5. overCnt > 2736 (95%),    overCnt.th_3to2=2736 

6. highOcc: not used,      highOcc.th_3to2= -1 

7. constVol >240 (2hr),   constVol.th_3to2=240 

8. constOcc > 240 (2hr),   constOcc.th_3to2=240 

9. volOnLowOcc: not used,    volOnLowOcc.th_3to2= -1 

10. volOccRatio: not used,      volOccRatio.th_3to2= -1 

11. conZeroVol: not used,   conZeroVol.th_3to2= -1 

12. conZeroOcc: not used,   conZeroOcc.th_3to2= -1 

13. COV_th: not used,   COV_th.th_3to2= -1 

 

else continue 

HL = 2 (I), if 

1. (conZeroVol + negVolCnt)=2800 and negVolCnt>5, not programmable 

2. negVolCnt > 1440 (50%),   negVolCnt.th_2to1=1440 

3. negOccCnt: not used,     negOccCnt.th_2to1= -1 

4. occLockOn > 2304 (80%),   occLockOn.th_2to1=2304  

5. zVolOnOcc > 2304 (80%),   zVolOnOcc.th_2to1=2304 

6. overCnt > 2304 (80%),    overCnt.th_2to1=2304   

7. highOcc > 2592 (90%),    highOcc.th_2to1=2592 

8. constVol : not used,    constVol.th_2to1= -1 

9. constOcc : not used,    constOcc.th_2to1= -1 

10. volOnLowOcc: not used,    volOnLowOcc. th_2to1= -1 

11. volOccRatio> 2304 (80%),    volOccRatio.th_2to1=2304 

12. conZeroVol>2870 (99%),   conZeroVol.th_2to1 = 2870 

13. conZeroOcc: not used,   conZeroOcc.th_2to1 = -1 

14. COV_th: not used,   COV_th.th_2to1= -1 
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else continue 

HL = 1 (T), if 

1. negVolCnt > 120 (1hr),   negVolCnt.th_1to0=120 

2. negOccCnt: not used,   negOccCnt.th_1to0= -1 

3. occLockOn > 120 (1hr),   occLockOn.th_1to0=120  

4. zVolOnOcc > 1152 (40%),   zVolOnOcc.th_1to0=1152 

5. overCnt > 120 (1hr),   overCnt.th_1to0=120 

6. highOcc: not used,    highOcc. th_1to0= -1 

7. constVol > 120 (1 hr),    constVol.th_1to0=120 

8. constOcc > 120 (1 hr),    constOcc.th_1to0=120 

9. volOnLowOcc > 120 (1 hr),   volOnLowOcc.th_1to0=120 

10. volOccRatio: not used,    volOccRatio.th_1to0= -1    

11. conZeroVol: not used,   conZeroVol.th_1to0 = -1 

12. conZeroOcc: not used,   conZeroOcc.th_1to0 = -1 

13. COV_th>30%,   COV_th.th_1to0= 30 (algorithm includes more conditions) 

else  

 HL = 0 (H), remaining cases. 

 

 

The final output file is created as a CSV formatted file that exactly matches with the columns defined in 

Table 2. The file name follows the same timestamp convention with the “health_param” prefix, which is 

shown below.  

  

 health_param.yyyymmdd.csv 

 

This file is save in the default folder, “~/traffic/processed/det_health_param/”, or in a user defined 

folder.   

3.3.4 Step 4: Apply COV rule-checks for applicable r_nodes  

 

After computation of all parameters as described in Section 3.3.3, HL is first adjusted based on COV 

relations within a single r_node. The first character of COV_ap parameter represents the result of this 

step. There are two cases, when n_type=’Station’ and more than one detectors per lane exist, and when 

n_type= ‘Entrance’. The rules for using spatial relations are described below. 

 

(1) n_type=’Station’ 

         A. If a lane has only a single detector, do nothing 

         B. If a lane has more than one detector (commonly two): 

      Let the two detector volumes be denoted x and y. 

 (i) if x=-1 or y=-1, do nothing 

(ii) if x=y=0 and negVolCnt<negVolCnt.th_1to0, assign HL=“T”  

 (iii) if x=0 and y<>0, assign HL=“I”  
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               Otherwise, compute the difference ratio, 

  𝛼 =
|𝑦−𝑥|

(𝑥+𝑦)/2
    

 (iv) if α<0.2, assign both HL=“H” 

 (v) if 0.2≤ α<0.35, assign HL=“T”, else  HL=”I”  

 (vi) assign the value of COV_ap according to the HL change made (U, D, or S depending on the 

change by this process) 

   

 (2) n_type = ‘Entrance’ 

 (i) If det_cat = “B” or “O” and negVolCnt < negVolCnt.th_1to0, then HL=”H”.  

 (ii) If HL of all detectors consist of only “H” and “O”, do not change and exit. 

 (iii) Spatial relation test. (For volume totals, do not add detVol=-1) 

         -- Add volumes of all P’s and B’s, and call PB_vol 

         --Add volumes of all Q’s and call Q_vol 

         --Add volumes of all M’s and call M_vol 

Check if PB_vol≈ Q_vol≈ M_vol and negVolCnt< negVolCnt.th_1to0, then upgrade the corresponding 

detectors to HL=“H”. A similarity requirement is satisfied when the differences are less than 10% 

(default value). 

(3) n_type = ‘Exit’ 

 If det_cat = “O” and negVolCnt < negVolCnt.th_1to0, then assign HL=”H” else no change. 

 

3.3.5 Step 5: Adjust HL according to COV tests for r_nodes with main -lane stations 

In Step 4, COV was used within a single r_node when redundant detectors with equivalent traffic flows 

are available. In Step 5, the COV principle is applied in three equivalent traffic-flow stations in main 

lanes. The equivalent stations consist of three stations: current station, equivalent upstream station, 

and equivalent downstream station. How to add or subtract certain detector volumes to maintain the 

equivalency between the three stations was described in Section 2.4, and the actual detector volume 

relations among associated detectors are defined in the “COV_def.yyyymmdd.csv” file that matches the 

date. The computed data according to a “COV_def.yyyymmdd.csv” file is saved in a COV_data.csv file 

with the same timestamp included in the COV_def filename, i.e., 

 

 COV_data.yyyymmdd.csv  

 

This file is archived in the “~/traffic/processed/COV_data/” folder and later loaded to the database table 

cov_data.  

 

To test if the stations met the requirement of COV rule or not, another intermediate data file is 

produced. Let three consecutive equivalent station volumes be denoted: up_vol, cur_vol, and dn_vol. 

For similarity measurements, normalized difference ratios are computed following the steps below.  
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 Two volumes are considered similar if the difference ratio is less than 0.05 when the difference 

ratio between v1 and v2 is computed as: 

   𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜(𝑣1, 𝑣2) = |𝑣1 − 𝑣2|/(
𝑣1+𝑣2

2
)  

 Compute diff_ratio(up_vol, cur_vol) and diff_ratio(cur_vol, dn_vol) 

 

Detectors are considered healthy if the resulting diff_ratio is less than 0.05, and they are listed under 

the column heading good_dets. For example, if diff_ratio(up_vol, cur_vol) is less than 0.05, all detectors 

involved in the current and upstream stations are considered to be candidates for HL upgrade. To save 

diff_ratio data, a CSV file is created with its data formatted with the columns defined in Table 7.  Its 

filename starts with “COV_diffRatio” followed by a timestamp of the date, i.e.,  

 

 COV_diffRatio.yyyymmdd.csv  

 

This file is stored in the “~/traffic/processed/COV_data/” folder. The detectors listed under the column 

heading, good_dets, satisfy the COV rule and are the detectors to be upgraded to HL=H.  

 

Table 7: Column Headings and Data Types of COV_diffRatio.csv Table 

Column 

Index 

Column 

Heading 

Data 

Type 

Null Notes 

0 route varchar(20), 

primary key 

not null route name, ex: I-694 

1 dir varchar(10), 

primary key 

not null direction of the route 

2 r_node varchar(10), 

primary key 

not null r_node representing current node 

3 up_cur_ratio float4 null Difference of ratio between upstream 

and current station volumes. Format 

(“F5”) 

4 cur_dn_ratio float4 null Difference of ratio between downstream 

and current station volumes. Format 

(“F5”) 

5 good_dets varchar(120) null a list of detectors that are found to be 

HL=”H” according to the COV test.  
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In order to keep track of which detectors are upgraded following the main lane COV rules, the detectors 

upgraded are listed in COV_upgradeDets.yyyymmdd.csv in which each line is the state before upgrade. 

An example of this file is shown in Figure 8, which is the content of the file for May 30, 2019. Again, it 

contains the record of each detector before upgraded to H.  

 

 

Figure 3.4: COV_upgradeDets.20190530.csv 

det_date,route,dir,staID,r_node,detID,lane,det_cat,abandoned,conZeroVol,negVolCnt,conZeroOcc,negOccCnt,occLockOn,zvolOnOcc,Over

Cnt,highOcc,constVol,constOcc,volOnLowOcc,corrCoef,volOccRatio,detVol,COV_ap,healthLevel 

2019-05-30,I-35E,NB,Exit,rnd_87679,3377,0,X,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-35W,NB,S1702,rnd_168,6911,1,,f,0,1165,0,1165,0,3,0,0,0,0,0,0.972324,1171,16175,N,T 

2019-05-30,I-35W,NB,S1702,rnd_168,6912,2,,f,0,1165,0,1165,0,0,0,0,0,0,0,0.965952,1172,15095,N,T 

2019-05-30,I-35W,NB,S1702,rnd_168,6913,3,HT,f,0,1165,0,1165,0,0,0,0,0,0,0,0.972900,1171,11335,N,T 

2019-05-30,I-35W,NB,S38,rnd_86379,271,1,,f,0,1160,0,1160,0,0,0,0,0,0,0,0.975868,1166,16216,N,T 

2019-05-30,I-35W,NB,S38,rnd_86379,272,2,,f,0,1160,0,1160,0,0,0,0,0,0,0,0.964144,1166,15103,N,T 

2019-05-30,I-35W,NB,S38,rnd_86379,541,3,HT,f,0,1160,0,1160,0,2,0,0,0,0,0,0.989233,1170,9590,N,T 

2019-05-30,I-35W,NB,S40,rnd_86391,275,1,,f,0,0,0,0,0,0,0,39,0,0,0,0.765087,49,23886,D,I 

2019-05-30,I-35W,NB,S55,rnd_95787,5963,1,,f,2876,0,2876,0,0,0,0,0,0,0,0,0.827297,1,4,N,I 

2019-05-30,I-35W,NB,S58,rnd_86483,322,4,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-35W,NB,S58,rnd_86483,6792,5,HT,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-35W,NB,ST519,rnd_5771,T3521,1,HT,f,0,818,1683,818,0,0,6,0,0,0,1855,0.000000,818,16691,N,T 

2019-05-30,I-35W,NB,S62,rnd_86499,T3506,1,,f,0,1572,0,1572,0,0,0,0,0,0,1072,0.000000,1572,16946,S,I 

2019-05-30,I-35W,NB,S664,rnd_87489,2734,3,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-35W,SB,S678,rnd_87787,2785,1,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-35W,SB,S29,rnd_88039,252,1,,f,0,1160,0,1160,0,0,0,2,0,0,0,0.939849,1168,15115,N,T 

2019-05-30,I-35W,SB,S29,rnd_88039,253,2,,f,0,1160,0,1160,0,0,0,8,0,0,0,0.927724,1165,18723,N,T 

2019-05-30,I-35W,SB,S29,rnd_88039,1001,3,HT,f,0,1160,0,1160,0,0,0,0,0,0,0,0.980668,1168,11488,N,T 

2019-05-30,I-35W,SB,S1715,rnd_177,6908,1,,f,0,1167,0,1167,0,0,0,3,0,0,0,0.935885,1172,15291,N,T 

2019-05-30,I-35W,SB,S1715,rnd_177,6909,2,,f,0,1167,0,1167,0,1,0,12,0,0,0,0.931156,1169,18875,N,T 

2019-05-30,I-35W,SB,S1715,rnd_177,6910,3,HT,f,0,1167,0,1167,0,2,0,0,0,0,0,0.978746,1168,12036,N,T 

2019-05-30,I-394,EB,S284,rnd_88327,793,1,,f,0,0,0,8,0,0,0,255,0,0,0,0.452633,36,23199,D,T 

2019-05-30,I-694,WB,S178,rnd_87149,16,3,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,I-694,WB,S176,rnd_87153,762,3,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,T.H.36,WB,S589,rnd_86737,2304,2,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,T.H.36,WB,S612,rnd_86739,2336,2,,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,T.H.52,SB,Exit,rnd_89735,5554,0,X,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,N,I 

2019-05-30,T.H.61,NB,Exit,rnd_1586,7497,0,X,f,234,166,234,166,0,11,0,0,0,0,0,0.945813,195,2018,N,T 

2019-05-30,T.H.61,NB,S1931,rnd_1585,7453,1,,f,0,166,0,166,0,3,0,0,0,0,0,0.944255,187,14650,N,T 

2019-05-30,T.H.61,NB,S1931,rnd_1585,7454,2,,f,0,166,0,166,0,7,0,0,0,0,0,0.981343,170,10987,N,T 

2019-05-30,T.H.61,SB,S1896,rnd_1266,7378,1,,f,0,166,0,166,0,6,0,0,0,0,0,0.951461,187,14662,N,T 

2019-05-30,T.H.61,SB,S1896,rnd_1266,7379,2,,f,27,166,27,166,0,4,0,0,0,0,0,0.986732,170,11709,N,T 

2019-05-30,T.H.61,SB,Entrance,rnd_1573,7487,0,M,f,303,166,303,166,0,11,0,0,0,0,0,0.940157,229,2004,N,T 

 

To illustrate the HL changes, the final detector records in the file health_param.20190530.csv are shown 

in Figure 9 (only for the first four detector records in Figure 8). Notice that health levels are upgraded to 

H from I or T. It can be also seen that COV_ap column is set to “NU” in which “N” indicates that HL was 

not modified from the single r_node COV algorithm but “U” indicates that HL was upgraded after 

application of the COV rule on the main-lane stations.   
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Figure 3.5: Health level upgrades applied in health_param.20190530.csv for the first four detectors in Figure 3.4. 

3.3.6 Step 6: Upload health_param and COV_data to the MySQL detectorhealth 

database  

The final computed records in CSV files (health_param.yyyymmdd.csv and COV_data. yyyymmdd.csv) for 

the day of computation are one-to-one matches with the corresponding database entries, and they are 

directly loaded to the detectorhealth database, using two steps: (1) if old data exists for the same day, 

delete it first, (2) load the latest data computed. These two steps ensure that only the most-recently 

computed data are loaded to the database.  

 

For loading data to MySQL tables, loading each row at a time is not efficient and time consuming. A 

more efficient way is used. The solution is use of an import function in MySQL, and it directly loads the 

CSV file in bulk to the corresponding table. Only restriction of this approach is that it voids if duplicate 

records are found, determine by primary keys. This problem is resolved, if the old data are removed 

before importing. This operation is robust and runs much faster than individual loading of records. 

Below shows an example of MySQL script used for importing one-day data, which was health_param for 

Nov 15, 2018. A similar script was used for COV_data.  

 

 

Figure 3.6: MySQL script for importing one day of health_param data file 

 

 

 

use detectorhealth; 

load data local infile 'Y:\\traffic\\processed\\det_health_param\\2018\\health_param.20181115.csv'  

into table health_param 

fields terminated by ',' 

lines terminated by '\r\n' 

ignore 1 lines;   

det_date,route,dir,staID,r_node,detID,lane,det_cat,abandoned,conZeroVol,negVolCnt,conZeroOcc,negOccCnt,occLockOn,zvolOnOcc,Over

Cnt,highOcc,constVol,constOcc,volOnLowOcc,corrCoef,volOccRatio,detVol,COV_ap,healthLevel 

2019-05-30,I-35E,NB,Exit,rnd_87679,3377,0,X,f,2880,0,2880,0,0,0,0,0,0,0,0,0.000000,0,0,NU,H 

2019-05-30,I-35W,NB,S1702,rnd_168,6911,1,,f,0,1165,0,1165,0,3,0,0,0,0,0,0.972324,1171,16175,NU,H 

2019-05-30,I-35W,NB,S1702,rnd_168,6912,2,,f,0,1165,0,1165,0,0,0,0,0,0,0,0.965952,1172,15095,NU,H 

2019-05-30,I-35W,NB,S1702,rnd_168,6913,3,HT,f,0,1165,0,1165,0,0,0,0,0,0,0,0.972900,1171,11335,NU,H 
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A total run time for a single day computation and uploading to the database took about 4 minutes of 

processing time on a PC with i7 CPU that runs on 3.6 GHz clock and 16GB RAM. This processing time is 

highly dependent on Internet traffic and speed but it took less than 5 minutes in most cases.    

 

3.4 FUNCTIONS OF SERVER MANAGEMENT SOFTWARE  

Manual management of the detector-health database would be time consuming and tedious. In order to 

simplify the sever management operations, a utility program, detHealth_daily.exe, was developed to 

automatically control all data processing steps and management of the MySQL database in the server, 

i.e., all steps are automated and it runs once daily through a Windows scheduler. This section briefly 

describes the features of this software and utilities. The details on how to use this program is available 

on-line through a user manual.  

 

Figure 11 shows the GUI of detHealth_daily.exe that is used for illustration. This tool can be used for two 

types of runs, manual and scheduled. For manual runs, user selects a date from the DateTimePicker 

provided and presses the “One Day Manual Run” button. This will compute all required parameters for 

the selected date and then load them to the database. The “Auto Run” button processes (computes and 

upload daily data to database) data for one day at a time from the last ending date set in the Settings to 

the most recent day (yesterday). This function is called by the Windows Scheduler when daily 

scheduled-runs are triggered. When it is manually used, this function allows the process to fill in the 

database to the most recent date. For example, suppose that the RTMC IRIS server or the database 

server failed for several days. Then, the database must be populated from the date of failure to the most 

recent day, and a single press of the “Auto Run” button will do the job for populating the missing data.  

There is also a need for creating or restoring data for a specific period defined by user. Suppose that the 

database was failed for some reason for a specified period. In such a case, the user should be able to run 

and restore data for a specific period. Another case would be to create past data for a period where 

data was never created. For these cases, a manual run function for a period defined by Start and End 

dates is used, and it can be executed using the interface shown below.  

 

 
 

 

 

The “Run All in One Click(...)” button function goes through five steps for producing and storing health-

parameters: (1) compute health-parameters, (2) compute COV_def file, (3) compute COV_data and 

adjust HL, (4) upload health-parameters to database, and (5) upload COV_data to database. These 

individual steps can be run for the given period, one-step at a time using the individual buttons provided 



39 

in the lower half of the groupbox labeled “Manual Runs from Start-to-End Dates.” It should be cautioned 

that Steps 1-3 must run by following the numerical order provided, i.e., (1), (2), and (3). One scenario 

that these partial steps could be useful is when the database failed but detHealth_daily ran, resulting 

successful production of all health parameters. In this case, steps (4) and (5) could be used to restore the 

data.    

 

The second tab (named Test Functions) provides several utilities, mostly for manually testing of the 

database. It includes a test function for downloading the most recent metro_config file and six buttons 

for database content tests. These tests are all designed to inquire and test a single day data specified in 

the date textbox. The first four buttons are to get answers or to take an action related to health_param 

in the database. This should be mainly used by a database administrator to check if the processing was 

run for a certain date and then to take actions. Here are four tests corresponding to the four buttons. 

 

 “Do health-parameters for the given date exist in the database?” This button is used to check if 

the data for the Date textbox exists in the database.  

 “Upload the health-parameter data (in the form of CSV) available for the given date to 

database.” This button uploads the health_param.yyyymmdd.csv data in the detector-health 

parameter folder to the database, corresponding to the Date textbox.  

 “Delete the health-parameters from the database for the given date.” This button deletes all 

detector-health parameters specified in the Date textbox. 

 “If data exist in DB for the given date, delete them first then upload.” This button deletes the 

health-parameters that already exist in the database for the date given in the Date textbox and 

then loads fresh new data for the same date from the detector-health parameter folder. 

 

Existence test and delete functions exist for the COV database. The two buttons available are: 

 

 “Does COV_data exist in DB for the given date?” 

 “Delete the given date of COV_data in the database.” This button checks existence of COV_data 

for the date in the Date textbox, and then deletes them if they exist. 
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Figure 3.7: Server management software, detHealth_daily 
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3.5 CLIENT SOFTWARE: DETHEALTH_APP  

 

A client software tool, called “detHealth_app,” was created to provide a data tool that utilizes the 

detector-health database. This utility was designed as an exploration tool for detector and station level 

data for up to one year from the ending date entered by user. It also provides utilities with map 

interfaces to give spatial information of detectors and stations. Since a separate user manual entitled 

“detHealth_app: User Manual” is available on line, only the key features of the software are described.  

 

detHealth_app currently consists of four tabs and its screen capture is shown in Figure 12. Functions 

available in each Tab are described based on the Version 2.1 (May 17, 2019). This software continuously 

evolves as the MnDOT needs change over time, and future versions will likely be different from the one 

described here.   

 

 

 

Figure 3.8: First tab of detHealth_app 
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Tab 1: Detectors. This tab provides a pie chart and listboxes of detector classification for the date 

selected by the DateTimePicker tool. Five listboxes are provided for five classes: Healthy, Tolerable, 

Impaired, Nonfunctional, and Off-line. Pressing any of the detectors in the list immediately displays all 

detector-health parameters of the day in the Selected Detector textbox. The first tab also includes a 

utility for retrieving historical data. This utility is controlled using the selection tools in the groupbox 

labeled “Historic Data of the Selected Detectors” and multiple detectors can be listed with comma 

separation in the Detector List textbox. The ending date should be selected using the provided date-time 

picker. Historic data is then retrieved with three options: last one month, last six months, or last one 

year from the user selected ending date. The retrieved data from database can be viewed using a graph 

or an Excel spreadsheet. If one year past data is selected, AADT computed using the AASHTO method 

(AASHTO Guidelines for Traffic Data Programs, 2009) is displayed in the graph.    

 

Tab 2: Stations. This tab provides data for a collection of stations that satisfy the COV principle. The data 

can be loaded for the date specified in the date-time picker tool. Once it is loaded, a station (main-lane 

r_node) can be selected by a mouse click from the map provided or from the listbox, which would then 

produce all related information in a callout box as well as in a textbox. The precise location of the station 

can also be plotted in a Google map. Historic data of the selected station could be retrieved for one 

month, six months, or one year, and then outputted in a graph or a spreadsheet. One year data retrieval 

provides an AADT computed using the AASHTO method.      

 

Tab 3: r_node Map. The third tab provides navigation of r_nodes and detectors in the RTMC 

metro_config file through a map. RTMC defines a location on a road using an r_node for all roads. Types 

of r_nodes include Station, Exit, Entrance, Intersection, Access, and Interchange, and each of the 

location is specified using GPS coordinates. If an r_node is a station, it represents a set of detectors on a 

road covering all main lanes at that specific location. Exit and Entrance r_nodes are similarly defined, 

and all detectors in the Exit or Entrance ramps become members of the r_node. Intersections and 

interchanges are transitional r_nodes of roads. Many r_nodes do not have detectors, and it is assigned 

for future locations of detectors or for identification of a specific location on the road. One of the useful 

tools in this tab is a search function of an r_node or a detector. After entering a detector or an r_node ID 

in the respective textbox and then clicking the search button points to the corresponding corridor and 

r_node, along with all detector information. The information includes corridor, station ID, node type, 

active or not, address, latitude/longitude, and detectors with lane numbers. It also provides a function 

to plot the r_node in a Google map. One month worth of volumes for any selected r_node is retrieved 

and plotted using the “Plot last one month of the r_Node” button.   
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Tab 4: Data Direct. This tab provides retrieval utilities for volume and detector-health parameters up to 

one year without using the detector-health database. One of the data types not available from the 

detector-health database is hourly volumes. This tab provides hourly volumes for one day, 10 days, one 

month, or six months. It also provides retrieval functions for length-based vehicle classification. Retrieval 

types can be selected in intervals of hourly or daily. Since the functions implemented in this tab do not 

use the detector-health database, this tool provides access to detector-health data when the database is 

not reachable or not available.   
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CHAPTER 4:  DATA ANALYSES 

This chapter describes some of data studies completed in “Task 2: Evaluation of Detector-Health 

Algorithm on a Corridor Study” and few selected examples on the use of the detHealth_app software 

tool. 

4.1 HISTOGRAM ANALYSIS 

Histograms provide information on underlying distribution of the given sample data, and it is commonly 

used as a first step to look into the characteristics of the data. In this project, histogram analyses were 

used as part of Task 2: Corridor Study, in which I-694 and I-94 data on 2015 and 2016 were used. The 

analysis results were reported in the Task 2 report.  

This section shows histograms of 2018 data on I-694 (EB and WB). Distribution patterns were very 

similar to that of 2015 and 2016. Histogram data were computed using all detectors in I-694 EB and WB, 

except for two types of detectors. The first type of detectors excluded were those detectors that are 

labeled true in the “abandoned” attribute. Another type of detectors excluded were those detectors 

that had “G” in its category name, because they are not actually detectors but green light counters in 

highway entrance ramps. The total number of records in 2019 excluding the detectors mentioned above 

for I-694 was 139,197.        

In all histogram data presented here, bins were created based on the number of 30-second time slots 

allocated by increments of one hour, producing 24 bins. Since one hour contains 120, 30-second time 

slots, the range was incremented by 120. The label of each bin is expressed using two numbers 

separated by a two-character symbol “->”. For example, “120->239” indicates that the range of this bin 

is [120,239] or 120 ≤ 𝑥 ≤ 239, and the number in the bin indicates occurrences of detector-health 

parameters. For example, consider ConZeroVol, which is a count of consecutive zero volumes in 30-

second time slots. If ConZeroVol of this detector on a day is 180, it means that consecutive zero volumes 

were observed for one and half hours and the bin [120, 239] is incremented by one. Because there were 

a large number of cases that fall at 0, i.e., zero occurrence of the parameter for the whole day, this case 

was assigned to a separate bin labeled “0-only.” Similarly, many cases also fall at 2880, i.e., occurrence 

of the parameter for the whole day, and it deserves a separate bin. This bin is labeled “2880-only.” In 

summary, all histograms contain twenty-six bins. The complete histogram data for all detector-health 

parameters of I-694 in 2018 is attached in Appendix A. The histogram data also includes percentage of 

each bin in a separate column.  

In general, three distribution patterns were observed. The first type shows very high frequencies in bins 

[0-only] and [1, 119] followed by an exponential drop but then frequency rises again in the last bins 

[2760, 2879] and [2880-only]. This characteristic is shown in Figure 13, and the parameters showing this 

pattern include ConZeroVol, NegVolCnt, zVolOnOcc and volOccRatio. It should be mentioned that the 

histogram of ConZeroOcc was nearly identical to that of ConZeroVol and thus omitted.       
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Figure 4.1: Histograms of ConZeroVol, NegVolCnt, zVolOnOcc and volOccRatio parameters on I-694 2018 data 
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The second distribution pattern observed was concentration of distribution in the [0-only] bin, which 

indicates that these parameters rarely happen. The parameters in this category include OccLoackOn, 

ConstVol, ConstOcc, and volOnLOwOcc. Since these parameters rarely happen, two interpretations may 

be considered: (1) ignore these parameters in determining detector-health level or (2) consider that the 

quality of the detector data on that day is low when one of these parameters is observed. In this test 

data, non-zero OccLockOn (10 or more consecutive minutes in which occupancy is in between 99 and 

100 percent) occurred only 11 times out of 130,067 detector days (number of detectors * 365), which is 

very low and shows that this condition rarely occurred.       
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Figure 4.2: Histograms of OccLoackOn, ConstVol, ConstOcc, and volOnLOwOcc parameters on I-694 2018 data 
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The last pattern observed is an exponential decay of population in low bins and then ending up no 

population in high bins. This pattern is shown in Figure 15. The parameters belong to this pattern 

include overCnt and highOcc. OverCnt is the total number of 30-second time slots with volume 

exceeding 25, and highOcc is the total number of time slots with occupancy exceeding 30%. Both are 

related to traffic congestion but may not be directly related to detector failure conditions. These two 

parameters may be used in detection of special events or congestion.     
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Figure 4.3: Histograms of overCnt and highOcc parameters on I-694 2018 data 
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Findings from histogram analyses (including the 2015 and 2016 data) are summarized below.  

 Histograms of conZeroVol (consecutive zero volume) are nearly identical to that of conZeroOcc 

(consecutive zero occupancy), which means that using one of them is sufficient for analyzing 

detector health.  

 There are a large number of cases where conZeroVol=2,880 which indicates that zero volumes in 

every 30 seconds were recorded for all day for that detector. This occurrence was observed 

from about 2.5% of the test data.  

 occLockOn (occupancy lock on) rarely occurred. For I-694 EB and WB in 2015, occLockOn never 

occurred. In 2018, it occurred only 11 time in I-694.  

 Distribution patterns of zVolOnOcc (zero volume on non-zero occupancy) and overCnt (vol>25) 

exhibit a remarkable similarity, although only similarity between them is that both parameters 

are not theoretically feasible under realistic traffic conditions. 

 constVol ( consecutive constant volume) and constOcc ( consecutive constant occupancy) 

parameters remain zero nearly 100% cases, and only few are in the range of 1-120 on all routes.  

 highOcc (occ>35%) indicates congestion time. Since congestions may not occur continuously for 

24 hours, highOcc=2880 should indicate some malfunction in a detector. This condition only 

occurred in I-94 EB and 25 cases in 2015 and 6 cases in 2016. 

 volOccRatio (total violation time of vol/occ acceptable range) had a similar distribution as that of 

negVolCnt (negative volume count). Since negVolCnt indicates malfunction of detector, 

volOccRatio appears a good indicator for detecting negVolCnt or malfunction detectors.      
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Using histograms, several interesting facts were observed as summarized above. However, they did not 

lend themselves as a clear indicator for determining detector-health levels, i.e., it is difficult to 

determine threshold levels of parameters based on histogram analysis. It is also arguable that quality of 

detector data depends on applications. For example, computing AASHTO AADT does not require perfect 

data and the threshold for determining good data may be lowered. However, some other applications 

may require traffic data requiring minimal missing values. Therefore, setting threshold levels should 

probably be based on application requirements and not by histogram analyses.       

4.2 INCIDENT DATA ANALYSIS 

Incident data of interstate highway I-694 and I-94 for the period of from 1/1/2015 to 12/31/2016 were 

provided by RTMC to the research team. The received incident data was stored in a detector-health 

database table. Incident data provided latitude and longitude of the incident location but did not 

provide detector ID or station numbers that can correlate to the location of incidents. To identify and 

analyze the detectors affected by incidents, Google map, MnDOT PDF map, and custom software that 

can depict the station locations and road lanes were used. Incidents in the RTMC incident data were 

classified into four types, which are STALL, ROADWORK, HAZARD, and CRASH. The detailed analysis 

examples are attached in Appendix B. Below summarizes the findings.      

 Samples of STALL incidents did not show any abnormal traffic volume patterns or detector-

health parameters. It appears that STALL incidents do not affect daily volumes. 

 Samples of ROADWORK incidents showed consecutive zero volumes for the entire day or longer. 

This implies that a lane closure may be associated with ROADWORK. 

 Samples of CRASH incidents always led to a short period of high highOcc values on that station. 

This makes sense since a crash could easily cause congestion. However, it does not appear to 

affect daily volume totals. 

 Samples of HAZARD incidents mostly showed very high conZeroVol (approx. 2880). But in few 

cases, HAZARD incidents didn’t end up showing high conZeroVol values.  

In summary, conZeroVol was able to detect incident types listed as ROADWORK and HAZARD, while 

highOcc was affected in CRASH incidents. STALL did not show a consistent pattern in any of the 

detector-health parameters except frequent high conZeroVol values.    
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4.3 TESLA MAINTENANCE DATA ANALYSIS 

The TESLA system is a MnDOT legacy maintenance logging database that recorded loop maintenance 

tickets. MnDOT transitioned to a new management system called Transportation Asset Management 

System (TAMS) in Fall 2016. The research team received the legacy TESLA data for analysis of 2015 and 

2016.  

As the basic methodology, every station’s detectors on I-694 and I-94 were investigated. Per every 

detector, whether it has had a record in the TESLA maintenance log in 2015 or in 2016 was checked. If a 

maintenance record is found then all parameters for that station were analyzed for 2 years. Example 

analyses can be found in Appendix –C. 

The findings are summarized below. 

 A typical pattern of detector repair observed in the data was that all detectors in the station will 

stop giving data for few days and then they will give a large number of negVolCnt.  After that, 

the detectors start to produce normal patterns of traffic data. The transition from a large 

number of negative volumes to normal positive traffic volumes imply a successful repair of 

them. 

 Records on temporary detectors were not found from the TESLA database, meaning no 

maintenance operations were done or not recorded for temporary detectors. 

 The following pattern was observed when a detector was repaired. When a detector in a station 

is faulty and is about to be repaired, the whole station gave a large amount of negVolCnt 

followed by off-line of the detectors for few days. Once a repair was made, it again gave a large 

amount of negVolCnt followed by non-negative normal data. However, some exceptions were 

observed in that some detectors generated a normal pattern of data without giving a large 

number of negVolCnt. 

Temporary detectors were not recorded in the TESLA database, but an interesting pattern was 

observed. When a temporary detector was placed, the detector initially produced all zero data, i.e., 

conZeroVol=2880 but with negVolCnt=0. It then began to produce a normal pattern of traffic data. 

Appendix-C provides detailed information on data patterns of the detectors recorded in the TESLA 

maintenance tickets.   

 

4.4 DETECTOR REPLACEMENT: A KNOWN CASE 

RTMC MNIT provided a special known case to the research team in which problematic loops were 

replaced with Wavetronix. The location was I-94 WB & 57th Avenue, which corresponds to station ID, 

S243. According to an email received, the detectors appear turned off on November 13, 2015 and 

turned back on June 16, 2016. 
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The interest to this case is that “Can this event be detected from the detector-health database such that 

we can identify the time period in which the detectors were turned off and then back on?”  For this 

study, all detector-health parameters for station S243 from January 1, 2015 to December 31, 2016 were 

retrieved from the database. The main parameters affected by off-line were conZeroVol and negVolCnt, 

which become 2880 and -1, respectively. As an example, conZeroVol of the detector # 472 was plotted 

for two years and it is shown in Figure 16. ConZeroVol=2880 indicates “detector off-line.” Daily volumes 

of the same detector for the same period are shown in Figure 17 for verification. Notice that the relation 

is opposite. The rest of detectors in station S243 had the same off-line pattern. The fully off-line periods 

detected from data were shown using the orange arrow lines in Figure 16, and the actual off-line periods  

were 

(1) November 14, 2015 – June 15, 2016 (215 days) 

(2) September 1, 2016 – November 27, 2016 (88 days) 

(3) December 3, 2016 – December 8, 2016 (6 days) 

Note that MNIT only provided the off-line period, November 14, 2015 – June 15, which precisely 

matched with the period identified through detector-health parameters. However, this analysis found 

that two more periods that were off-lined, and MNIT did not have this record or information. This 

demonstrates that the detector-health parameters proposed in this research are sufficient to identify 

off-line detectors and will serve as a useful tool for checking when detectors are offline and then online 

again.   

 

Figure 4.4: Consecutive zero volume plot of detector 472 for the period 1-1-2015 to 31-12-2016 
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Figure 4.5: Daily detector volume total for the period 1-1-2015 to 31-12-2016 

 

 

 

4.5 OTHER EXAMPLES OF DETHEALTH DATABASE USE  

MnDOT TFA maintains continuous count (CC) data for the stations allocated in the Twin Cities’ freeway 

network using the RTMC detector data. One of the MnDOT data analysts informed the research team 

that CC Station# 309 had been giving zero volumes and the final AADT did not make sense in January 

2019. This station consists of three detectors and their IDs are 178, 179 and 180. To investigate this 

station, detHealth_app was run and the data were retrieved for one year with an ending date March 10, 

2019. The retrieved result is shown in Figure 18. According to this data, the problem of three detectors 

started from May 23, 2018 and then continued afterword, producing only zero volumes. This would 

definitely produce a biased AADT since the volume data are continuously zero for nine months. A 

preferred missing pattern of AASHTO AADT computation is availability of at least each day-of-week of 

good data per each month, and it does not meet this condition. Therefore, it is clear that the three 

detectors in CC #309 were not healthy detectors for the given period, and a different set of detectors for 

the AADT computation must be chosen or the volume data from these detectors must be thrown away. 
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Figure 4.6: Retrieval of a Continuous Count (CC) station #309 

 

The next example is an observation of data patterns of temporary detectors. As constructions start in 

Spring in Minnesota, MnDOT RTMC creates temporary traffic detectors in relation to a new construction 

zone to collect traffic data. Information on these temporary detectors, when and where they were 

placed and began operational, is not readily available to MnDOT TFA. One way of finding information is 

using the detector-health database. All temporary detector ID starts with a letter “T”. As an example, 

consider a detector ID, T35103, which is located in the interstate highway I-35 SB. Using detHealth_app, 

six past months of data from the ending date, June 12, 2019, were retrieved for volume and negVolCnt. 

Figures 19 and 20 show these results. It should be noted that six-month retrieval only returned past 58 

days of data instead of 182 days, which indicates that this detector was created and on line 58 days back 

from the ending date June 12, 2019. Figure 19 shows that this temporary detector was on-line on April 

16, 2019. However, the detector produced negative-one volume values until April 25, in which -1 

indicates erroneous or missing data.  

In summary, the information obtained for T35103 was that this detector was on-line on April 16, 2019 

but began producing data starting from April 26, 2019. The first day (April 26) data contained negative 

volumes on 2,049 30-second time slots and daily volume of 2,565 vehicles on 831 30-second time slots 

was recorded. The data was further investigated using the “Get Vol/Occ Graphs” function in 

detHealth_app on April 26, 2019 and the result is shown in Figure 21. It turned out missing data 

occurred on the first 17 hours of April 26, 2019, i.e., the detector T35103 began operational starting at 

5:05PM on April 26. After April 26, the number of time slots on negative volumes dropped below 970 

according to Figure 20. After observing Figures 19 and 20, we conclude that the quality of data on this 

detector is inconsistent at best even after April 26.     
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Figure 4.7: Six-month volume data retrieval of temporary detector T35103 

 

 

 

Figure 4.8: Six-month negVolCnt retrieval of temporary detector T35103 
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Figure 4.9: 30-Second volume and occupancy plots for detector T35103 on April-26-219 
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CHAPTER 5:  CONLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

This project developed a quality-control and data-exploration system targeted for RTMC detector 

volume data. The key to this system was characterization of daily detector data in 12 detector-health 

parameters and a simplified classification to four classes: healthy, tolerable, impaired, and 

nonfunctional. The data from the healthy and tolerable classes were recommended for use in traffic 

counting programs while the detectors in impaired or nonfunctional classes were recommended for 

maintenance. The COV principle was exploited and found to be a useful tool for confirming or verifying 

quality of station data. Violation of COV principle in three consecutive equivalent stations was sufficient 

to indicate inclusion of one or more bad detectors. 

 

The final detector-health system was implemented as a client-server model in which a relational 

database became the center of the server. A client software program called detHealth_app.exe was 

developed, which provided retrieval and visualization of various health parameters along with detector 

or station volumes. The front page of this program provided a pie chart and a list of each class for the 

overall view of the detector-health state, from which more details were retrieved.   

 

For data analysis of the detector-health system, maintenance records and incident records were studied 

and a good correlation to health parameters was observed. The research team was successfully able to 

identify a known case of detector replacement provided by RTMC using historical data of the detector-

health parameters.  

 

In conclusion, the detector-health system developed in this project is a useful tool in exploring quality of 

detector data and can serve as part of a quality control/assurance program. This tool would help 

improve quality of the volume data retrieved from the RTMC detectors by choosing healthy detectors.      

5.2 RECOMMENDATIONS 

 

Creation of the detector-health database was an attempt to develop parameters for quality control for 

individual detectors when no hardware malfunction data was available. A better solution recommended 

would be directly integrating the quality-control parameters in the RTMC raw detector data by recording 

all observed malfunctions.  

 

The advantage of having a client server-based system is that all heavy computations are done at the 

server side and then the results are shared among clients. This leads to light computations and less 

storage requirements at the client end. Another advantage is that client and server software can be 

evolved independently as long as the interface rule between them does not change. However, one 

critical issue found is that this approach has a single point failure (server) and is expensive in terms of 

maintenance, i.e., someone has to manage and take care of the server. More specifically, if the detector-

health database in the server fails, someone has to restore the database service. In government 
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agencies such as MnDOT, adding more IT personal for maintaining the database is not easy under 

limited budgets and resources. Therefore, the research team recommends conversion of the present 

system to a serverless, standalone system in which a single program installed on a client’s PC provides 

the same data service without requiring connection to a server.   

 

 

 



57 

REFERENCES 

[1] Federal Highway Administration. (2016, October). Traffic Monitoring Guide. FHWA, Washington, DC. 

[2] Klein, L., M. Mills, & D. Gibson. (2006). Traffic Detector Handbook: Third Edition. Vol I, FHWA-HRT-06-

108. Federal Highway Administration, McLean, VA.    

[3] Jacobson, L., N. Nihan, & J. Bender. (1990). Detecting Erroneous Loop Detector Data in a Freeway 

Traffic Management System. Transportation Research Record, 1287, 151–166.   

[4] James, I. W. (1976, March). The Inductive Loop Vehicle Detector: Installation Acceptance Criteria and 

Maintenance Techniques. California Department of Transportation, Sacramento Transportation 

Laboratory, Sacramento CA, Federal Highway Administration, Washington, DC. 

[5] May, A., B. Coifman, R. Cayford, & G. Merrit. (2004, April). Automatic Diagnostics of Loop Detectors 

and the Data Collection System in the Berkeley Highway Lab (California PATH Research Report, UCB-ITS-

PRR-2004-13). Berkeley, CA. 

[6] Chen, L., & A. May. (1987). Traffic Detector Errors and Diagnostics. Transportation Research Record, 

1132, 82–93.   

[7] Coifman, B. (1999). Using Dual Loop Speed Traps to Identify Detector Errors. Transportation Research 

Record, 1683, 47–58. 

[8] Coifman, B., & S. Dhoorjaty. (2004). Event Data-Based Traffic Detector Validation Tests. ASCE Journal 

of Transportation Engineering, 130(3), 313–321.  

[9] Lee, H., & B. Coifman. (2011). Identifying and Correcting Pulse-Breakup Errors from Freeway Loop 

Detectors. Transportation Research Record, 2256, 68–78.  

[10] Zhang, X., Y. Wang, N. Nihan, & M. Hellenbeck. (2003). Development of a System for Collecting 

Loop-Detector Event Data for Individual Vehicles. Transportation Research Record, 1855, 168–175. 

[11] Ernst, J., D. Lamba, J. Krogmeier, & D. Bullock. (2010). Crosstalk Detection in Signalized-Intersection 

Loop Detectors. Transportation Research Record, 2192, 50–63. 

[12] Yu, R., G. Zhang, & Y. Wang. (2009). Loop Detector Segmentation Error and Its Impact on Traffic 

Speed Estimation. Transportation Research Record, 2099, 50–57. 

[13] Cleghorn, D., F. Hall, & D. Garbuio. (1991). Improved Data Screening Techniques for Freeway Traffic 

Management Systems. Transportation Research Record, 1320, 17–31.    

[14] Chen, C., J. Kwon, J. Rice, A. Skabardonis, & P. Varaiya. (2003). Detecting Errors and Imputing 

Missing Data for Single Loop Surveillance Systems. Transportation Research Record, 1855, 160–167. 



58 

[15] Kwon, T. M. (2009, March). Transportation Data Research Laboratory: Data Acquisition and 

Archiving of Large Scaled Transportation Data, Analysis Tool Developments, and On-Line Data Support 

(CTS 09-07). ITS Institute, Center for Transportation Studies, Minneapolis, MN.  

[16] Daganzo, C. (1997). Fundamentals of Transportation and Traffic Operations. Oxford, UK: Pergamon. 

[conservation of vehicle] 

[17] Vanajakshi, L., & L. Rilett. (2004). Loop Detector Data Diagnostics Based on Conservation-of-Vehicle 

Principle. Transportation Research Record, 1870, 162–169. 

[18] Weijermars, W., & E. Van Berkum. (2006). Detection of Invalid Loop Detector Data in Urban Areas. 

Transportation Research Record, 1945, 82–88. 

[19] Kwon, T. M. (2003, July). TMC Traffic Data Automation for Mn/DOT’s Traffic Monitoring Program 

(Report No. MN-RC-02004-29). Minnesota Department of Transportation, St. Paul, MN. 

[20] Wall, Z., & D. Dailey. (2003). Algorithm for Detecting and Correcting Errors in Archived Traffic Data. 

Transportation Research Record, 1855, 183–193. 

 [21] Chen C., K. Petty, A. Skabardonis, & P. Varaiya. (2001). Freeway Performance Measurement 

System: Mining Loop Detector Data. Transportation Research Record, 1748, 96–102.  

[22] Kwon J., C. Chen, & P. Varaiya. (2004). Statistical Methods for Detecting Spatial Configuration Errors 

in Traffic Surveillance Sensors. Transportation Research Record, 1870, 124–132. 

[23] Hranac, R., & K. Petty. (2007). Dashboards for Transportation Operations: Detector Health Case 

Study. Transportation Research Record, 1993, 33–42. 

[24] American Association of State Highway and Transportation Officials. (1992). AASHTO Guidelines for 

Traffic Data Programs. American Association of State Highway and Transportation Officials, Washington, 

DC. 

 

 



 

APPENDIX A  

SAMPLE HISTOGRAM DATA FOR DETECTOR-HEALTH 

PARAMETERS 

 



A-1 

Histogram Data of Detector-Health Parameters, I-694 EB/WB, 2018: ConZeroVol, NegVolCnt, 

ConZeroOcc, NegOccCnt 

Range ConZeroV
ol 

ConZeroVol 
% 

NegVolC
nt 

NegVolCnt % ConZeroOcc ConZeroOcc 
% 

NegOccCnt NegOccCnt 
% 

0-only 78244 60.2 109240 84 78416 60.3 100421 77.2 

1->119 28297 21.8 19104 14.7 28293 21.8 27733 21.3 

120->239 9511 7.3 568 0.4 9487 7.3 598 0.5 

240->359 4424 3.4 92 0.1 4416 3.4 94 0.1 

360->479 2384 1.8 11 0 2375 1.8 30 0 

480->599 948 0.7 18 0 944 0.7 30 0 

600->719 559 0.4 17 0 557 0.4 22 0 

720->839 230 0.2 6 0 227 0.2 7 0 

840->959 117 0.1 0 0 118 0.1 3 0 

960->1079 106 0.1 11 0 105 0.1 10 0 

1080->1199 136 0.1 16 0 134 0.1 18 0 

1200->1319 187 0.1 78 0.1 184 0.1 80 0.1 

1320->1439 212 0.2 18 0 215 0.2 18 0 

1440->1559 231 0.2 21 0 226 0.2 22 0 

1560->1679 174 0.1 46 0 180 0.1 45 0 

1680->1799 130 0.1 4 0 127 0.1 7 0 

1800->1919 82 0.1 0 0 81 0.1 0 0 

1920->2039 99 0.1 88 0.1 99 0.1 88 0.1 

2040->2159 77 0.1 11 0 77 0.1 10 0 

2160->2279 52 0 0 0 51 0 0 0 

2280->2399 60 0 0 0 57 0 0 0 

2400->2519 37 0 0 0 36 0 2 0 

2520->2639 24 0 0 0 24 0 0 0 

2640->2759 31 0 0 0 29 0 8 0 

2760->2879 483 0.4 718 0.6 439 0.3 815 0.6 

2880-only 3232 2.5 0 0 3170 2.4 6 0 

Total 130067 100 130067 100 130067 99.9 130067 99.9 

 

 

 

 

 

 



A-2 

 

 

Histogram Data of Detector-Health Parameters, I-694 EB/WB, 2018: OccLockOn, zVolOnOcc, overCnt, 

highOcc 

Range OccLockOn OccLockOn % zVolOnOcc zVolOnOcc % overCnt overCnt % highOcc highOcc 
% 

0-only 130055 100 99144 76.2 113763 87.5 75335 57.9 

1->119 9 0 30537 23.5 16140 12.4 46132 35.5 

120->239 2 0 162 0.1 67 0.1 5551 4.3 

240->359 1 0 29 0 39 0 1948 1.5 

360->479 0 0 72 0.1 28 0 773 0.6 

480->599 0 0 2 0 17 0 258 0.2 

600->719 0 0 3 0 9 0 58 0 

720->839 0 0 1 0 3 0 11 0 

840->959 0 0 0 0 0 0 1 0 

960->1079 0 0 0 0 1 0 0 0 

1080->1199 0 0 3 0 0 0 0 0 

1200->1319 0 0 2 0 0 0 0 0 

1320->1439 0 0 0 0 0 0 0 0 

1440->1559 0 0 0 0 0 0 0 0 

1560->1679 0 0 1 0 0 0 0 0 

1680->1799 0 0 0 0 0 0 0 0 

1800->1919 0 0 2 0 0 0 0 0 

1920->2039 0 0 0 0 0 0 0 0 

2040->2159 0 0 0 0 0 0 0 0 

2160->2279 0 0 0 0 0 0 0 0 

2280->2399 0 0 0 0 0 0 0 0 

2400->2519 0 0 1 0 0 0 0 0 

2520->2639 0 0 1 0 0 0 0 0 

2640->2759 0 0 1 0 0 0 0 0 

2760->2879 0 0 46 0 0 0 0 0 

2880-only 0 0 60 0 0 0 0 0 

Total 130067 100 130067 100 130067 100 130067 100 

 

 

 

 

 



A-3 

 

 

Histogram Data of Detector-Health Parameters, I-694 EB/WB, 2018: constVol, constOcc, volOnLowOcc, 

volOccRatio 

Range constVol constVol 
% 

constOcc constOcc 
% 

volOnLowOcc volOnLowOcc 
% 

volOccRatio volOccRatio 
% 

0-only 129738 99.7 130033 100 125379 96.4 3293 2.5 

1->119 326 0.3 34 0 4687 3.6 102654 78.9 

120->239 3 0 0 0 1 0 13005 10 

240->359 0 0 0 0 0 0 3073 2.4 

360->479 0 0 0 0 0 0 2278 1.8 

480->599 0 0 0 0 0 0 1281 1 

600->719 0 0 0 0 0 0 728 0.6 

720->839 0 0 0 0 0 0 792 0.6 

840->959 0 0 0 0 0 0 489 0.4 

960->1079 0 0 0 0 0 0 282 0.2 

1080->1199 0 0 0 0 0 0 672 0.5 

1200->1319 0 0 0 0 0 0 418 0.3 

1320->1439 0 0 0 0 0 0 138 0.1 

1440->1559 0 0 0 0 0 0 80 0.1 

1560->1679 0 0 0 0 0 0 41 0 

1680->1799 0 0 0 0 0 0 21 0 

1800->1919 0 0 0 0 0 0 4 0 

1920->2039 0 0 0 0 0 0 58 0 

2040->2159 0 0 0 0 0 0 36 0 

2160->2279 0 0 0 0 0 0 6 0 

2280->2399 0 0 0 0 0 0 0 0 

2400->2519 0 0 0 0 0 0 0 0 

2520->2639 0 0 0 0 0 0 0 0 

2640->2759 0 0 0 0 0 0 0 0 

2760->2879 0 0 0 0 0 0 718 0.6 

2880-only 0 0 0 0 0 0 0 0 

Total 130067 100 130067 100 130067 100 130067 100 



 

 

APPENDIX B  

EXAMPLES OF INCIDENT DATA ANALYSES 

 

 



 

B-1 

Incident: Crash  

Date 02-01-2015, Friday 

Incident data 

 

 

As can be seen in the above diagrams, Incident happened near S1397 proved by Google Maps and 

the location has two lanes. Its detector-health parameters are as follows: 

 

Observation: 

 Incident at the location of S1397 resulted in high conZeroVol on that day at all adjacent 

stations. 

 At S1397, there is highOcc observed for 26 timeslots on detector 6194 and 45 timeslots on 

detector 6195. 

 Even when dates 1-5 of January looked into, we get conZeroVol low or equal to the value 

on 2nd January which is the incident date. What separates 2nd January data was the highOcc 

value on that station that day. 

  



 

B-2 

Date 05-01-2015, Monday 

Incident data: 

'194168394', '2015010522020079', '2015-01-05 22:02:01', 'Incident CRASH', 'I-694', 'EB', '...!', 

'f', 't', 'C709', 'Mainline', 'rollover', NULL, '45.0566215515137', '-93.133674621582' 

Station S1077, S1078, S1079 and S1080 are near the location of incident. Thus, we analyze their 

data trend at adjacent dates 3, 4, 5, 6 of January 2015. The incident occurred on 5th Jan, 2015 at 

10pm. 

Google Maps of the incident location proves it is S1078. 

 

 

Observation 

 The data proves that incident happened on lane 2 of S1078. Hence, the detector on lane 2, 

detector ID 4257, shows 166 timeslots of highOcc on 5th January, 2015. 
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Date 06-01-2015, Tuesday 

Incident data: 

'194185364', '2015010522020079', '2015-01-06 04:33:21', 'Incident CRASH', 'I-694', 'EB', '...!', 't', 

't', 'C709', 'Mainline', 'rollover', NULL, '45.0566215515137', '-93.133674621582' 

According to Google Maps, the location is near S1078 and it has two lanes. We analyze its data 

on 5th, 6th, 7th, and 8th of January, 2015. 

 

 

 

Observation: 

 Incident happened on 4am on 6th Jan. 2015. There is no high conZeroVol on S1078 lane 

two. However, highOcc value of 25 was observed. 
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Date 08-01-2015, Thursday 

Incidents: 

'194380456', '2015010809204808', '2015-01-08 09:20:48', 'Incident CRASH', 'I-694', 'EB', '.....!.', 

'f', 't', 'C7011', 'Mainline', '', NULL, '45.0691528320312', '-93.2802963256836' 

'194382064', '2015010809204808', '2015-01-08 09:43:02', 'Incident CRASH', 'I-694', 'EB', '.....!.', 

't', 't', 'C7011', 'Mainline', '', NULL, '45.0691528320312', '-93.2802963256836' 

The data proves that one incident happened at 9:20am and another at 9:43am over S149 which has 

five lanes and five detectors. 

 

 

Observation: 

 It can be seen that incidents on 8th Jan 2015 over S149 leads to high highOcc values. 
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Incidents: 

'194381891', '2015010809410057', '2015-01-08 09:41:02', 'Incident CRASH', 'I-694', 'EB', '..!', 'f', 

't', 'C861', 'Exit', '', NULL, '44.9519920349121', '-92.9589004516602' 

'194382330', '2015010809410057', '2015-01-08 09:47:50', 'Incident CRASH', 'I-694', 'EB', '..!', 't', 

't', 'C861', 'Exit', '', NULL, '44.9519920349121', '-92.9589004516602' 

Two incidents happened at S1028 on 8-1-2015 and it shows again high occupancies. 
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'194387484', '2015010811182594', '2015-01-08 11:18:26', 'Incident CRASH', 'I-694', 'EB', '..!!', 

'f', 't', 'C719', 'Mainline', '', NULL, '45.0322380065918', '-92.9670104980469' 

'194389316', '2015010811182594', '2015-01-08 11:49:14', 'Incident CRASH', 'I-694', 'EB', '..!!', 

't', 't', 'C719', 'Mainline', '', NULL, '45.0322380065918', '-92.9670104980469' 

 

 

  

It can be seen that on 8th Jan, 2015 that two incidents of CRASH occurred, which resulted in 

high occupancy values at S1397. 

It should also be noted that this incident resulted in a closure of two lanes instead of one in 

previous incidents. 
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'194390265', '2015010812034773', '2015-01-08 12:03:48', 'Incident CRASH', 'I-694', 'EB', '..!!', 'f', 

't', 'C718', 'Mainline', '', NULL, '45.0336532592773', '-92.9810638427734' 

'194391100', '2015010812034773', '2015-01-08 12:16:35', 'Incident CRASH', 'I-694', 'EB', '...!', 'f', 

't', 'C718', 'Mainline', '', NULL, '45.0336532592773', '-92.9810638427734' 

'194397012', '2015010812034773', '2015-01-08 13:47:05', 'Incident CRASH', 'I-694', 'EB', '...!', 't', 

't', 'C718', 'Mainline', '', NULL, '45.0336532592773', '-92.9810638427734' 

 

 

 

Since S1455, S1393, S1394, S1395, S1396 and S1397 are adjacent, incident at S1396 has effect 

on all of them, resulting in high highOcc values at all stations on the date of incident. S1393 was 

not working at that time. 
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'194390304', '2015010812043678', '2015-01-08 12:04:37', 'Incident CRASH', 'I-694', 'EB', '!..!', 

'f', 't', 'C715', 'Mainline', '', NULL, '45.0374145507812', '-93.0440902709961' 

'194391513', '2015010812043678', '2015-01-08 12:23:36', 'Incident CRASH', 'I-694', 'EB', '!..!', 't', 

't', 'C715', 'Mainline', '', NULL, '45.0374145507812', '-93.0440902709961' 

'194391789', '2015010812043678', '2015-01-08 12:27:36', 'Incident CRASH', 'I-694', 'EB', '!..!', 'f', 

't', 'C715', 'Mainline', '', NULL, '45.0374145507812', '-93.0440902709961' 

'194393899', '2015010812043678', '2015-01-08 13:02:07', 'Incident CRASH', 'I-694', 'EB', '!..!', 't', 

't', 'C715', 'Mainline', '', NULL, '45.0374145507812', '-93.0440902709961' 

All these incidents happened at S1455. Same patterns as previous are shown. All downstream 

stations are affected resulting high occupancies. 
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'194390567', '2015010812085843', '2015-01-08 12:08:58', 'Incident CRASH', 'I-694', 'EB', '...!', 

'f', 't', 'C706', 'Mainline', '', NULL, '45.0670928955078', '-93.182731628418' 

'194390577', '2015010812085843', '2015-01-08 12:09:14', 'Incident CRASH', 'I-694', 'EB', '...!', 

't', 't', 'C706', 'Mainline', '', NULL, '45.0670928955078', '-93.182731628418' 

The incidents affected occupancies of S203, S184 and S1074. 
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'194392694', '2015010812424891', '2015-01-08 12:42:49', 'Incident CRASH', 'I-694', 'EB', '...!!', 

'f', 't', 'C704', 'Mainline', '', NULL, '45.0645713806152', '-93.223518371582' 

'194404372', '2015010812424891', '2015-01-08 14:45:34', 'Incident CRASH', 'I-694', 'EB', '...!!', 

't', 't', 'C704', 'Mainline', '', NULL, '45.0645713806152', '-93.223518371582' 

The incidents affected highOcc on S173 and S175. 
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Incident: Roadwork 

Incidents: 

'194787531', '2015011312165690', '2015-01-13 12:16:57', 'Incident ROADWORK', 'I-694', 'EB', 

'!!!', 'f', 't', 'C718', 'Exit', '', NULL, '45.0346717834473', '-92.9891204833984' 

'194791241', '2015011312165690', '2015-01-13 13:45:11', 'Incident ROADWORK', 'I-694', 'EB', 

'!!!', 't', 't', 'C718', 'Exit', '', NULL, '45.0346717834473', '-92.9891204833984' 
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As can be seen, highOcc was not affected by ‘Incident Roadwork’ because all lanes were closed 

“!!!” in this case. The conZeroVol values seem to be high but it is interesting to note that they are 

also high before as well as after the date of incident. Thus, it appears “Incident Roadwork” cause 

lane closures and zero volumes. 

 

Incidents: 

'195117558', '2015011716115872', '2015-01-17 16:11:59', 'Incident CRASH', 'I-694', 'EB', '!!.....', 

'f', 't', 'C701', 'Mainline', '', NULL, '45.0691680908203', '-93.2806396484375' 

'195118387', '2015011716115872', '2015-01-17 16:29:43', 'Incident CRASH', 'I-694', 'EB', '!!!....', 

'f', 't', 'C701', 'Mainline', '', NULL, '45.0691680908203', '-93.2806396484375' 

'195124950', '2015011716115872', '2015-01-17 18:43:38', 'Incident CRASH', 'I-694', 'EB', '!!!....', 

't', 't', 'C701', 'Mainline', '', NULL, '45.0691680908203', '-93.2806396484375' 
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This CRASH incident happened right after S145 and before S149. High values of highOcc are 

mostly visible at the time of the crash incident. 
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Incident: STALL 

'194931151', '2015011507040689', '2015-01-15 07:04:07', 'Incident STALL', 'I-694', 'EB', '.?!', 

'f', 't', 'C715', 'Exit', '', NULL, '45.0374145507812', '-93.0481567382812' 

'194931279', '2015011507040689', '2015-01-15 07:05:22', 'Incident STALL', 'I-694', 'EB', '.?!', 't', 

't', 'C715', 'Exit', '', NULL, '45.0374145507812', '-93.0481567382812' 

 

 

 

The above data on 15-01-2015 shows a pattern that somewhat matches with the lane closing pattern 

“.?!”. The above incident happened at directly above S1455. 
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'194949148', '2015011510480883', '2015-01-15 10:48:10', 'Incident STALL', 'I-694', 'EB', '..!', 'f', 

't', 'C704', 'Exit', '', NULL, '45.0644226074219', '-93.2216796875' 

'194952921', '2015011510480883', '2015-01-15 12:17:12', 'Incident STALL', 'I-694', 'EB', '..!', 't', 

't', 'C704', 'Exit', '', NULL, '45.0644226074219', '-93.2216796875' 

 

 

 

 

 

This incident STALL was on S173. Checking both S173 and S175, it does not show any noticeable 

increase in health parameters and change in traffic volume.   
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Incident: HAZARD 

'195061627', '2015011618101286', '2015-01-16 18:10:13', 'Incident HAZARD', 'I-694', 'EB', '.?.', 

'f', 't', 'C716', 'Exit', '', NULL, '45.0370445251465', '-93.0217514038086' 

'195061729', '2015011618101286', '2015-01-16 18:10:52', 'Incident HAZARD', 'I-694', 'EB', '.?.', 

't', 't', 'C716', 'Exit', '', NULL, '45.0370445251465', '-93.0217514038086' 

 

 

 

  

 

This HAZARD incident happened between S1393 and S1394. It does not show any noticeable 

impact on traffic patterns or health parameters.  
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Incident: Hazard 

'218882207', '2015092011220178', '2015-09-20 11:22:02', 'Incident HAZARD', 'I-694', 'EB', '!!..', 

'f', 't', 'C819', 'Mainline', '', NULL, '45.0694808959961', '-93.2978897094727' 

'218882209', '2015092011220178', '2015-09-20 11:22:06', 'Incident HAZARD', 'I-694', 'EB', '!!..', 

't', 't', 'C819', 'Mainline', '', NULL, '45.0694808959961', '-93.2978897094727' 

'218882211', '2015092011220586', '2015-09-20 11:22:06', 'Incident HAZARD', 'I-694', 'EB', '!!..', 

'f', 't', 'C819', 'Mainline', 'debris', '2015092011220178', '45.0694808959961', '-93.2978897094727' 

'218882297', '2015092011220586', '2015-09-20 11:24:16', 'Incident HAZARD', 'I-694', 'EB', '!!..', 

't', 't', 'C819', 'Mainline', 'debris', '2015092011220178', '45.0694808959961', '-93.2978897094727' 

 

 

 

This “Incident Hazard” caused lane closures at S134 which has two lanes with detector IDs 681 

and 682. Detector 681 was continuously giving 2880 conZeroVol and 0 negVolCnt throughout 

two years. It is suspected that there must be construction on that lane, but it needs to be proved 

through construction data. 
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'220088561', '2015100815394822', '2015-10-08 15:39:53', 'Incident HAZARD', 'I-694', 'EB', '....!', 

't', 't', 'C704', 'Mainline', '', NULL, '45.0656967163086', '-93.2338333129883' 

'220088563', '2015100815395316', '2015-10-08 15:39:53', 'Incident HAZARD', 'I-694', 'EB', '....!', 

'f', 't', 'C704', 'Mainline', 'emrg_veh', '2015100815394822', '45.0656967163086', '-

93.2338333129883' 

The HAZARD incident was located between S168 and S171. We suspect that detector 551 was in 

a construction zone or broken since that detector has conZeroVol=2880.  
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'220365473', '2015101308513143', '2015-10-13 08:51:33', 'Incident HAZARD', 'I-694', 'EB', 

'.?....', 'f', 't', 'C702', 'Mainline', '', NULL, '45.0683441162109', '-93.2563629150391' 

This HAZARD incident was located between S165 and S163, but the data does not show any sign 

of abnormal patterns. 

 

 

 

 

  



 

 

APPENDIX C  

TESLA MAINTENANCE LOG DATA ANALYSES 

  



 

C-1 

694-EB, 2015 

The following stations in 694-EB had no records in the TESLA Maintenance 2015 and 2016 log, 

and thus they are excluded from analyses. 

S131, S142, S149, S163, S165, S166, S171, S173, S175, S177, S179, S184, S203, S1074, S1075, S1076, 

S1077, S1950, S1951, S1394, S1395, S1396, S1397, S1398, S1399, S1400, S1401, S1402, S1403, S1404, 

S1405, S1406, S1407, S1028  

The stations that include detectors with one or more maintenance tickets is reviewed one by one. 

Station: S134 

Detector: 681 

It has a TESLA maintenance record in 2015 as follows: 

 

Observations from data: 

Detector 681 belongs to station S134 and has a TESLA record on 6/17/2015 as shown above. Data 

is reviewed for the date of maintenance, followed by analysis of health parameters for two years. 

Observations are summarized below.  

 S134 has two detectors 681 and 682. 681 had been giving consecutive 0s throughout the 

year 2015 and 2016. In contrast, 682 had been working fine during the same time, 

producing normal patterns of traffic data. 

 On 6/17/2015, ‘REPLACE LOOP’ in Ticketstatus can be found from the TESLA log.  

 In 2015, detector 681 had conZeroVol=2,880 throughout the year except for a few days. 

negVolCnt was 1,800 on 12/16/2015 and 1,650 on 12/212015. 

 It kept the same behavior in 2016. It would either give conZeroVol=2,880 most of the 

time or else it gave conZeroVol + negVolCnt =2,880. For example, conZeroVol=1,509 

and negVolCnt=1371 on 12/23/2016. The total of conZerovol and negVolCnt was always 

near 2,880.  

 

Comments: 

Detector 681 gave conZeroVol=2,880 for the most of two years (2015 and 2016) and some 

negVolCnt in thousands. The loop was supposed to be replaced on 6/17/2015 but apparently it was 

still not replaced or the fix was not successful, because volume counts were either zeros or negative 

ones.   
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Station: S145 

Detectors: 439, 440, 441 and 442 

TESLA records were only found in 2016 as follows: 

 

Observations 

Maintenance tickets were issued for all four detectors on 3/9/2015 and only detector 442 on 

5/3/2015. Data observations are summarized below. 

2015 

 Station S145 has four detectors 439, 440, 441 and 442, in which all of them had been 

showing a normal pattern of traffic data in 2015 from 1/1/2015 to 11/29/2015. 

 After 11/29/2015, volumes become mostly 0’s and conZeroVol=2,880. 

 negVolCnt was 120 for all detectors on 3/8/2015; 1023 on 8/7/205; 1,023 on 8/7/2015; 

and 693 on 12/16/2015. 

 On 3/9/2015, a ticket was issued for ‘Maintenance Analyze’ for all detectors in S145. 

That means that negVolCnt=120 on 3/8/2015 was noticed by MnDOT, from which they 

may have placed it in the TESLA maintenance log. On 2nd or 3rd May 2015, data is back 

to normal, so the maintenance ticket of detector 442 on 3rd May might have been placed 

for confirmation.  

 

2016 

 conZeroVol becomes large or near 2,880 zeroes starting from 11/30/2015 and it 

continues  until 1/16/2016. 

 All detectors or S145 were offline from 1/17/2016 to 7/6/2016.  

 negVolCnt was 1671 on 7/7/2016, then after which detectors 439 and 440 returned to 

normal, whereas detectors 441 and 442 started giving conZeroVol=2,880. This indicates 

that detectors 439 and 440 were repaired but not 441 and 442. 

 On 8/31/2016, the detectors 441 and 442 stop giving conZeroVol=2,880 and returned to 

normal.  It can be concluded that they finally repaired 441 and 442 in S145.  

 

 

Comments: 
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‘Maintenance Analyze’ tickets were issued on 3/9/2015 and 5/3/2015. Detectors 439 and 440 

returned to normal on 7/7/2016, and detectors 441 and 442 on 8/31/2016. This case shows that it 

a long delay may be possible between the repair ticket issue and the actual repair.  
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Station: S147 

Detectors: 3071, 393, 394, 395 

Maintenance record was found on 9/16/2015 that detector 394 passed the ‘Operations Test’.  

Observations: 

2015 

 Detector 394 gave high conZeroVol (> 2860) until 10/7/2015 and the volume was very 

low.   

 negVolCnt was 120 on 3/8/2015, 1,423 on 5/5/2015, 1,500 on 7-5-2015, 434 on 

7/15/2015, then 1,380 on 7/20/2015. 

 Detector 394 was offline on 5/6/2015 and between 7/16/2015 and 7/20/2015.   

2016 

 conZeroVol seems fine the whole year except on 20 and 21st August, where we get 

“conZeroVol > 2600”. Then on 10th and 11th September we get “conZeroVol > 2,600”. 

 negVolCnt is 120 on 13-3-2016. It is greater than 2,000 on 19th and 20th of June. 

Comments 

Even though the TESLA data says detector 394 passed ‘Operations Test’ on 9/16/2015, it gave 

high conZeroVol (near 2,800) until 10/7/2015. Detector 394 began producing normal data started 

staring from 10/8/2015.   
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Station: S168 

Detectors: 549, 550, 551 

It has one maintenance record for detector 551 saying ‘In Repair’ on 9/16/2015. 

Observations 

2015 

 Detector 551 kept giving very high conZeroVol (> 2,870) throughout 2015.  

 Detector 549 and 550 were working fine, and no data was missing throughout 2015. 

 negVolCnt on detector 551 was 120 on 8th March, 493 on 5th May, and 254 on 15th July.  

 Volumes of detector 551 were zero throughout 2015. 

 

2016 

 Detector 551 kept giving very high conZeroVol ( > 2870) throughout 2016.  

 Detector 549 and 550 were working fine. No data was missing throughout 2016. 

 For detector 551, negVolCnt was 120 on 13th March, 2,028 on 19th June, and 340 on 20th 

June. 

 Volumes of detector 551 were zero the whole year. 

 

Comment 

The detector 551 that was recorded ‘In Repair’ on 16th September 2015 keeps giving conZeroVol 

near 2,880 throughout 2015 and 2016. Volumes were zero throughout 2015 and 2016. This 

detector is clearly not working in 2015 and 2016, and thus it may never have been repaired, i.e., 

“In Repair” status is probably equivalent to “not repaired yet.”  
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Station: S1450 

Detectors: 5504, 5505, 5506, 5507, 5508, T6008, T6009, T6010, T6011, T6012 

Only one maintenance record was found from detector 5504 for “In Construction” on 4/3/2015. 

 

Observations: 

2015 

 Detector 5504 worked normal from Jan 1 to March 4. Starting March 5, it showed high 

conZeroVol and low daily volume (less than 400). Detector 5504 started working normal 

after August 23. All other detectors appear to work fine. 

 negVolCnt was 120 on 8th March for all detectors, 125 on 12th July,  722 on 13th Sept, on, 

1,630 on 15th September, 1,416 on 29th September, and 2,190 negVolCnt on 5th October.   

 Detector 5504 was offline on 14th September and five days between 30th September and 

4th October.  

 Followed by offline, a large negVolCnt value was found in the first online day, i.e., 1,630 

on 15th September and 2,190 on 5th October.  

 Temporary detectors gave no data in 2015. They started giving data from 10th May, 2016. 

 

 

2016 

 All detectors work fine until 29th April, 2016 after which only Temporary ‘T’ detectors 

work and normal detectors become offline. 

 negVolCnt was 1,950 on 28th April for all detectors.   

 Temporary detectors gave 2,072 negVolCnt on 10th May and then started giving normal 

data from 11th.   

Comments 

S1450 has 10 detectors, five of them were temporary and the rest five were regular. Regular 

detectors worked fine in 2015 except detector 5504 which had few problems (offline and 

negVolCnt). Regular detectors were completely offline starting from April 30, 2016, and then 

detectors were switched to temporary detectors and they were online staring from May 10, 2016. 

Therefore, there were no detectors activated for 10 days between April 29 – May 9, 2016.  

It was observed that negVolCnt was very high just before offline or right after online.   



 

C-7 

 

Station: S1393 

Detectors: 6182, 6183 

One maintenance record was found for detector 6182 on 10/15/2015: 

 

Observations: 

2015 

 Both detectors were online on January 1, offline until January 13th, and then online again 

starting from January 14th and then worked fine for the rest of 2015.   

 On 1st Jan, 2015 both detectors gave 1396 negVolCnt=1,396. At the first day of online 

(January 14), negVolCnt was 1,370 for both detectors. 

2016 

 Detector 6182 started giving conZeroVol=2,880 from January 6th and then until June 26th. 

 It is strange that it does not give large negVolCnt before and after it starts giving 

conZeroVol=2,880. 

 Starting 27th June, all detectors worked fine and normal. 

Comments 

The strange thing here is that detector 6182 starts giving 2,880 consecutive zeroes in 2016 and 

stops them without the usual pattern of giving large negVolCnt values. It might be due to that the 

detectors were placed online near midnight and worked from start.  

The TESLA record indicates that a ticket was issued for Lock-On on detector 6182 on October 

15, 2015. There were no significant change of data near this log date. However, the data showed 

that detector 6182 began working fine starting June 27, 2016, which appears the date of final 

repair or recovery from zero volumes. 
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